TSINGHUA-PRINCETON-COMBUSTION INSTITUTE 2022 SUMMER SCHOOL ON COMBUSTION

CURRENT STATUS OF AMMONIA COMBUSTION

William Roberts King Abdullah University of Science and Technology July 14-15, 2022

TSINGHUA-PRINCETON-COMBUSTION INSTITUTE

			Schedule		
Beijing	July 11	July 12	July 13	July 14	July 15
Time	(Mon.)	(Tue.)	(Wed.)	(Thu.)	(Fri.)
			Mechanism		Mechanism
			Reduction and		Reduction and
08.00			Stiff		Stiff
08.00			Chemistry		Chemistry
~			Solvers		Solvers
11.00			Tianfeng Lu		Tianfeng Lu
			VMN:		VMN:
			52667557219		52667557219
		Virtual		Virtual	
*10.00		Poster		Lab	
10.00		Session		Tour	
~		10:00~12:00		10:00~12:00	
12.00		VMN:		VMN:	
		388239275		231842246	
14:00	Fm	ndomontal of I	Tamos	Combustion i	n Microgravity
~	I'u	Suk Ho Chur	anies	and M	icroscale
17:00	7	7MN: 4230031	1g 310/	Kaoru	Maruta
Session I			5174	VMN: 71	656262918
14:00	Se	Not		Current Stat	us of Ammonia
~	Marku	s Kraft		Com	bustion
17:00	VMN: 30/	10/10053/10		Willian	n Roberts
Session II	v IVII (, 37-	107703370		VMN: 80	506726244
19:00	Com	hustion Chami	stry and Kinatic N	Machanism Dav	alanment
~	Com	Sustion Chem	Tiziano Faravel		clopinent
22:00			VMN: 35989357	660	
Session I			v Ivii (. 55767557	000	
19:00	Con	nbustion Fund	amentals of Fire S	Safety	
~	Con		é Torero	Juicty	
22:00		VMN· 4	57002781862		
Session II		V 1011 (1002101002		

2022 SUMMER SCHOOL ON COMBUSTION

Note:

¹Session I and Session II are simultaneous courses.

²VMN: Voov Meeting Number

Guidelines for Virtual Participation

1. General Guidelines

• Tencent Meeting software(腾讯会议) is recommended for participants whose IP addresses

locate within Mainland China; Voov Meeting (International version of Tencent Meeting) is recommended for other IP addresses. The installation package can be found in the following links:

a) 腾讯会议

https://meeting.tencent.com/download/

- b) Voov Meeting https://voovmeeting.com/download-center.html?from=1001
- All the activities listed in the schedule are "registrant ONLY" due to content copyright.
- To facilitate virtual communications, each participant shall connect using stable internet and the computer or portable device shall be equipped with video camera, speaker (or earphone) and microphone.

2. Lectures

- The lectures are also "registrant ONLY". Only the students who registered for the course can be granted access to the virtual lecture room.
- To enter the course, each registered participant shall open the software and join the conference using the corresponding Voov Meeting Number (VMN) provided in the schedule; only participants who show unique identification codes and real names as "xxxxx-Last Name, First Name" will be granted access to the lecture room; the identification code will be provided through email.
- During the course, each student shall follow the recommendation from the lecturer regarding the timing and protocol to ask questions or to further communicate with the lecturer.
- For technical or communication issues, the students can contact the TA in the virtual lecture or through emails.
- During the course, the students in general will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.

3. Lab Tour

- The event will be hosted by graduate students from Center for Combustion Energy, Tsinghua University and live streamed using provided Voov Meeting Number.
- During the activity, the participants will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.
- Questions from the virtual participants can be raised using the chat room.

4. Poster Session

- The event will be hosted by the poster authors (one Voov Meeting room per poster) and live streamed using provided Voov Meeting Number.
- During the activity, the participants will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.
- Questions from the virtual participants can be raised using the chat room or request access to audio and video communication.

Teaching Assistants

• Fundamentals of Flame (Prof. Suk Ho Chung)

TA1: Hengyi Zhou (周恒毅); zhouhy19@mails.tsinghua.edu.cn

TA2: Xinyu Hu (胡馨予); hxy21@mails.tsinghua.edu.cn

• Combustion Chemistry and Kinetic Mechanism Development (Prof. Tiziano Faravelli) TA1: Shuqing Chen (陈舒晴); chen-sq19@mails.tsinghua.edu.cn

TA2: Jingzan Shi (史京瓒); sjz21@mails.tsinghua.edu.cn

• Current Status of Ammonia Combustion (Prof. William Roberts) TA1: Yuzhe Wen (温禹哲); wyz20@mails.tsinghua.edu.cn

TA2: Haodong Chen (陈皓东); chd20@mails.tsinghua.edu.cn

• Soot (Prof. Markus Kraft)

TA1: Yuzhe Wen (温禹哲); wyz20@mails.tsinghua.edu.cn

TA2: Haodong Chen (陈皓东); chd20@mails.tsinghua.edu.cn

• Combustion Fundamentals of Fire Safety (Prof. José Torero)

TA1: Xuechun Gong (巩雪纯); gxc19@mails.tsinghua.edu.cn

TA2: Weitian Wang (王巍添); wwt20@mails.tsinghua.edu.cn

• Combustion in Microgravity and Microscale (Prof. Kaoru Maruta)

TA1: Hengyi Zhou (周恒毅); zhouhy19@mails.tsinghua.edu.cn

TA2: Xinyu Hu (胡馨予); hxy21@mails.tsinghua.edu.cn

• Mechanism Reduction and Stiff Chemistry Solvers (Prof. Tianfeng Lu)

TA1: Shuqing Chen (陈舒晴); chen-sq19@mails.tsinghua.edu.cn

TA2: Jingzan Shi (史京瓒); sjz21@mails.tsinghua.edu.cn

Outline of Lecture Series

- Lecture 1: Introduction to ammonia
- Lecture 2: Ammonia combustion kinetics
- Lecture 3: Premixed ammonia flames
- Lecture 4: Non-premixed flames and Diagnostics
- Lecture 5: Sooting flames with ammonia
- Lecture 6: Practical considerations

<section-header>The CCRC Ammonia Team \widetilde{V}_{2} \widetilde

Climate Change and Paris Accords The race to zero carbon emissions...

Ну	Hydrogen colors						
-	Color	Primary Feedstock	Primary Energy Source	Primary Poduction Process	Carbon Impact (kg CO ₂ /kg H ₂)		
	Brown	Coal or Lignite	Chemical Energy in Feedstock	Gasification & Reformation	18 44 20		
	Gray	Natural Gas	Chemical Energy in Feedstock	Gasification (SMR)	18 to 20		
	Blue	Coal, Lignite, or Natural Gas	Chemical Energy in Feedstock	Gasification with Carbon Capture and Sequestration			
	Green	Biomass or Biogas	Chemical Energy in Feedstock	Gasification and Reformation	0.6 to 3.5		
	Ciccii	Water	Electricity	Electrolysis			
allas citur	Pink	Water	Nuclear Power	Electrolysis	\bigvee		
April 10 y pigt at King Hazarbah Univ Konser wat Performent	Res	earch Center					

Ammonium Nitrate

- Convert ammonia and nitric acid
- $HNO_3 + NH_3 \rightarrow NH_4NO_3$
- Primarily used as a fertilizer
- · Decomposition is very exothermic and converts liquid to gas
 - At low temperatures: $NH_4NO_3 \rightarrow N_2O + 2H_2O$
 - At high temperatures: $2NH_4NO_3 \rightarrow 2N_2 + O_2 + 4H_2O$
 - Regulated as an explosive

Round trip efficiencies (RTE)

- Net energy required for the ammonia cracking between 0.28 and 0.30 MWh per ton ammonia
- The ammonia cracker leads to total losses "estimated to be 1.41 MWh per ton (equates to overall ammonia cracker efficiency 76%) for best case scenario.
- The hydrogen compression technologies: mechanical compression (40-50% efficient), electrochemical compression (potentially 70-80% efficient), and chemical compression using metal hydrides (less than 30% efficient)
- Overall efficiency for ammonia best- and worst-case RTE values range from 15-21% in ICEs and, in turbines, 24 to 31% of the input renewable energy.

First shipment of blue ammonia

26

Limitations of Ammonia as a Fuel

- Narrow flammability limits (18% to 28% of fuel mole fraction) and low flame speed
- High heat of vaporization (1371 kJ/kg vs. 271 kJ/kg of gasoline)
- High autoignition temperature (930 K vs.859 K for methane) and ON ~ 130
- Incomplete combustion: NO_x, NH₃ emissions
- Ammonia is toxic: exposure limit 25-50 ppm with fatal consequences above 300 ppm

Solution: Blending of ammonia with suitable additives (H2, HCs, e-fuels)

Clean Combustion Research Center

Over	view	and	com	paris	son o	of fo	our o	liffer	ent
amm	onia (OX10	lat101	n mee	chan	1SM	S		
	Mechanism	#species/ reactions	Subsets	Experiment type ^a	Mixtures	Т (К)	P (bar)	Φ	
	Glarborg-Mech	151/1395	H ₂ /CO, C1-C2 hydrocarbon, amine and	Flame spec [82] FR spec [83]	NH ₃ /O ₂ /Ar NH ₃ /CH ₄ /O ₂	Room temp 900-1800	0.046	0.71 0.13, 1.07,1.55	
		31/203	nitrogen	ST IDT [81] RCM IDT [84]	NH ₃ /O ₂ /Ar NH ₃ /CH ₄ /O ₂ /A r/N ₂	1560-2500 900-1100	1.4,10,30 20, 40	0.5, 1.0, 2.0 0.5, 1.0, 2.0	
	Stagni-Mech		Hydrogen/ amine	JSR/FR spec [74]	NH ₃ /O ₂ /He	500-2000	1	0.01-0.375	
				ST IDT [81]	NH ₃ /O ₂ /Ar	1560-2500	1.4, 10, 30	0.5, 1.0, 2.0	ST: shock tube:
		156/2437	C0-C3 Hydrocarbon/ amine	ST IDT [70] RCM IDT [62]	NH ₃ /O ₂ /N ₂ NH ₃ /O ₂ /Ar NH ₂ /CH ₂ /O ₂ /H	1100-1600 1000-1130 500-2000	20-40 40-60	0.5-2.0 0.5-2.0 0.5 1.0 2.0	RCM: rapid
		125/1099	125/1099 H ₂ , H ₂ /CO, CH ₄ /NOx/amine	[76] ER spec [86]	e	300-2000		0.0, 1.0, 2.0	machine; JSR: jet-stirred reactor;
	Shrestha-Mech			111 0000 [00]	H ₂ /N ₂ O/NH ₃ /N	995	3	2.2	
				Flame spec [87]	NH _{3/} NO/Ar	298	0.07	1.46	FR: flow reactor; IDT: ignition delay
				Flame spec [88] ST IDT [81]	NH ₃ /H ₂ /O ₂ /Ar NH ₃ /O ₂ /Ar	298 1560-2500	0.05	1.0 0.5, 1.0, 2.0	time;
				S _L [85]	NH ₃ /O ₂ /He/N ₂	298, 323, 373	1	0.8-1.3	S_{L} : laminar burning
	CEU-NH3 Mech	91/445 H ₂ /CO/CH ₄ / OH/C ₂ H ₅ OH amine	91/445 H ₂ /CO/CH ₄ /CH ₃	ST IDT [89]	NH ₃ /H ₂ /air NH ₃ /CH ₄ /air	298, 473 1400-1800	1,3	0.8-1.4	velocity.
			amine	ST IDT [81] S _L [14, 37, 40]	NH ₃ /O ₂ /Ar NH ₃ /H ₂ /CO/C	1560-2500 298,348,398	1.4,10,30 1,3,5	0.5,1.0,2.0 0.7-1.5	
allines could another []	Clean Cor	nhustic	n	Flame spec [90]	H ₄ /air NH ₃ /NO/Ar	298	0.07	1.46	
Ang Angeles Strength of	Fesearch	Center	F #	FR spec [83]	NH ₃ /CH ₄ /O ₂	900-1800	1.06	0.13,	

Theoretical Studies of Ammonia Reactions

Motivation

 Calculation of accurate rate constants and branching ratios for kinetic modeling of NH₃/H₂ oxidation

Procedure

- Geometry optimization at MP2/cc-pVTZ level of theory
- Single point calculation using G3, G4 and W1U composite methods and CCSD(T)/CBS level of theory
- Statistical rate theory for k(T)

Results and Findings

- Improved rates and branching ratios obtained for key $\rm NH_3$ related reactions

mol⁻¹ energy [keal) R2: $H_2NO+O_2(^3\Sigma_0^-) \rightarrow NHO(\delta^4A'')+HO_2$ R5: NIL+HO, +H-NO+OH R6: NH_2 + HO_3 $\rightarrow NH_3$ + $O_2(^5\Delta_k)$ Joe JPCA 1986 k_overall-CCSD Stagni Reac.Che k1-abs-CCSD m. Ena 202 1E-1 k (cm³ molecule⁻¹ s⁻¹) abs W1U 1E-11 1E-12 1E-13 1E-14 1E-15 $NH_3 + H \rightarrow NH_2 + H_2$ 1E-1 1E-17 12 1000 K/T

Outline of this lecture

- · Basic structure to model development
- Ammonia thermal decomposition

Ammonia oxidation

- Ammonia and Hydrogen
- Ammonia and DME, DEE
- Ammonia and higher hydrocarbons
- DeNOx mechanisms
- Pyrolysis of ammonia

*** | Clean Combustion *** | Research Center

NH₃ oxidation: High-temperature chemistry

	Valid	ation		
Fuel	Data type	T (K)	P (atm)	ø
NH3	Flame speed	298	1-5	0.6-1.5
NH3	Flame speed	298-473	1	0.8-1.4
NH3	Flame speed	298-473	1-10	0.8-1.3
NH3	Ignition delay	1560-2455	1.4-30	0.5-2.0
NH3	Flow reactor	1100-2000	1.25	0.375
NH3	Premixed Flame	1500-2256	0.046	0.706

Y. Li et al., Int. J. Hydrog. Energy 45 (2020) 23624-23637. B. Mei et al., Combust. Flame. 210 (2019) 236-246. C. Lhuillier et al., Fuel 263 (2020) 116653. K.P. Shrestha et al., Proc. Combust. Inst. 38 (2021). O. Mathieu et al., Combust. Flame 162 (2015) 554-570. A. Stagni. et al., React. Chem. Eng. 5 (2020) 696-711 J. Bian et al., Proc. Combust. Inst. 21 (1986) 953-963.

Outline of this lecture

- · Basic structure to model development
- Ammonia thermal decomposition
- Ammonia oxidation
- Ammonia and Hydrogen
- Ammonia and DME, DEE
- Ammonia and higher hydrocarbons
- DeNOx mechanisms
- Pyrolysis of ammonia

*** | Clean Combustion *** | Research Center

NH₃/H₂ Kinetic Modeling

Model validation

- Validated against comprehensive data involved in NH₃, N₂H₄, H₂/N₂O, H₂/NO, H₂/NH₃
- New Jet Stirred Reactor at intermediate temperatures
- Better performance against present data

Model development

- Evaluate the source of rate constants
- Examine the agreements among different sources
- Evaluate/estimate the uncertainties of kinetic data

Research Center

		Vali	dation		
	Fuel	Data type	Т (К)	P (atm)	ø
	NH3/H2	Flame speed	298-473	1	0.8-1.4
	NH3/H2	Flame speed	298	1-5	1.0
	NH3/H2	Flame speed	473	1-10	0.8-1.4
	NH3/H2	Flame speed	298	1-5	0.7-1.6
	NH3/H2	Ignition delay	950-1150	20-60	0.5-2.0
	NH3/H2	JSR	800-1280	1	0.25-1.0
	NH3/H2	Premixed flame	400-2000	0.05-0.12	0.9-1.1
et al., Fuel 26; ha et al., Proc a et al., Int. J. al., Combust. , Combust. Fla et al., Combu	3 (2020) 116653. . Combust. Inst. 38 (2 Hydrog. Energy 40 (2 Flame 221 (2020). me 206 (2019) 189-2 st. Flame 2021. 1116	2021). 015) 9570-9578. 2005 M			

Outline of this lecture

- Basic structure to model development
- Ammonia thermal decomposition
- Ammonia oxidation
- Ammonia and Hydrogen
- Ammonia and DME, DEE
- Ammonia and higher hydrocarbons
- DeNOx mechanisms
- Pyrolysis of ammonia

** | Clean Combustion ** | Research Center

Outline of this lecture

- Basic structure to model development
- Ammonia thermal decomposition
- Ammonia oxidation
- Ammonia and Hydrogen
- Ammonia and DME, DEE
- Ammonia and higher hydrocarbons
- DeNOx mechanisms
- Pyrolysis of ammonia

Research Center

Outline of this lecture

- Basic structure to model development
- Ammonia thermal decomposition
- Ammonia oxidation
- Ammonia and Hydrogen
- Ammonia and DME, DEE
- Ammonia and higher hydrocarbons
- DeNOx mechanisms
- Pyrolysis of ammonia

"" | Clean Combustion

DeNOx Targets

	Fuel Data type		т (К)	P (atm)	ø
	NH3/NO	Flame speed	298	1	1.0-2.0
	NH3/NO	Flame speed	298	1	0.1-4.0
	NH3/NO	JSR	1100- 1450	1	0.1-2.0
	NH3/NO	JSR	1000- 1400	1	0.016
	NH3/NO	Flow reactor	920-1380	1	0.002
	NH3/NO	Flow reactor	940-1400	1	0.0016- 0.08
	NH3/NO	Premixed Flame	1500- 2100	0.071	1.46
alling citizati instating pigtati trag bandan term become and term					

P. Glarborg et al, Prog. Ener. Comb. Sci., (2018) B. Mei et al., Proc. Combust. Inst. 38 (2021). M.D. Checkel et al., Journal of Loss Prevention in the Process Industries 8 (1995) 215-220. P. Dagaut, Combust. Sci. Technol. (2019) 1-13. R. Rota et al., Combust. Sci. Technol. 163 (2001) 25-47. F. Kasuya et al., Chemical Engineering Science 50 (1995) 1455-1466. J. Vandooren et al., Combust. Flame 98 (1994) 402-410.

Conclusions

- Significant advances have been made in studying ammonia combustion chemistry
- Various kinetic models provide good predictions for NH₃ pyrolysis and oxidation. Focus on H₂ blending needs attention.
- H_2 blending promotes the conversion of NH_3 at given temperatures
- Effects of blending NH_3 and H_2 with hydrocarbon fuels warrants further investigation

Research Center

Outline of L-3

- Laminar flame speeds
 - Methods
 - Cellularity
- Swirl flames of NH₃ mixtures
 - Stability limits
 - NOx
- Gas Turbine combustors
 - Ansaldo mGT
 - Double Swirl Burner

Clean Combustion Research Center

Combustion properties

Fuel	NH ₃	H ₂	CH ₄	C ₃ H ₈		
Maximum burning velocity (cm/s)	7	291	37	43		
Lower calorific value (MJ/kg)	18.6	120	50	46.4		
Flammability limit (in terms of Φ)	0.63-1.4	0.1-7.1	0.5-1.7	0.51-2.5		
Auto-ignition temperature (K)	924	844	813	739		
Adiabatic flame temperature (K)	2073	2383	2223	2273		

Kobayashi H, Hayakawa A, Somarathne KDKA, Okafor EC. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019;37(1):109-33

Clean Combustion Research Center

Laminar flame speed

- The speed at which the flame propagates through the unburned premixed reactant mixture in a combustion process
- Important parameter in understanding chemical kinetics mechanisms in combustion

100% C3H8, φ = 1, 1 bar

"" | Clean Combustio "" | Research Center

Laminar flame speed

- To measure laminar flame speed, the flame must be:
 - One dimensional
 - No heat loss
 - No stretch
- Multiple experiments can measure flame speed:
 - Bunsen burner
 - Counterflow burner
 - Flat flame burner
 - Constant-volume combustion chamber (CVCC)

Conclusions – Lean mGT scale burner

- Lean to far lean NH₃-CH₄ flames can be stabilized
- NH_3 - CH_4 mixtures up to an X_{NH3} = 0.70 produce flames with similar stability to pure CH_4 .
- Far lean NH₃-CH₄ mixtures exhibit NO emissions that are much reduced compared to that found for lean equivalence ratios typically associated with lean premixed combustors ($\phi \sim 0.70$ or 0.80)
- N₂O emissions are negligible, except for very lean equivalence ratios.

We need to explore another strategy!

KAUST Double Swirl Burner

Innovative design for double stream burner to:

- Study flame behavior of NH₃ Studies NO emissions
- Studies the practicality of using KDSB as a combustion device for several applications such as gas turbines.

Flame Measurements

Gas analyzer_Testo350
Detects: NO, O₂, and CO, CO₂
Water cooled sampling probe to quench the chemical reaction.

Testo.com

□ In-flame temperature

• Type-S Thermocouple:

Measures temperature distribution radially and axially.

Emission temperature

Type- K Thermocouple:

Measures exhaust gas temperature

OH-PLIF

- Planar Laser-Induced Fluorescence Laser was used to:
- Detects and measures OH concentration
- Measuring OH level helps understanding NO formation
- Effect of ammonia addition

Direct imaging of swirl flame: Circulation zone created by the bluff body at Re_{out} =4350, Re_{in} =4250, ϕ_{out} =0.7, and ϕ_{in} =0.8

Clean Combustion Research Center

Flame structure from pure methane to pure ammonia

Direct imaging of swirl flame: Both annuli are pure CH₄ at Re_{out}=4350, ϕ_{out} =0.7, Re_{in}=4250, and ϕ_{in} =1.4

Direct imaging of swirl flame: Inner annulus is pure NH₃, and outer annulus is pure CH₄ at Re_{out}=4350, ϕ_{out} =0.7, Re_{in}=4250, and ϕ_{in} =1.4

Effect of increasing Ammonia percentage

Research Center

 $\begin{array}{l} \text{Direct imaging of swirl flame: Effect of xNH}_{3}\\ \text{on NO emissions at } \text{Re}_{\text{out}}\text{=}4350, \ \text{Re}_{\text{in}}\text{=}4250, \\ \phi_{\text{out}}\text{=}0.7, \ \text{and} \ \phi_{\text{in}}\text{=}1.2 \end{array}$

Effect of outer stream equivalence ratio

Direct imaging: Outer annulus stream kept at $Re_{out}{=}4350,\,\varphi_{out}{=}0.7,\,Re_{in}{=}4250,\,\text{and}\,\varphi_{in}{=}0.5$

Effect of increasing swirl number

Direct imaging: Effect of outer swirl on the emissions at Re_{out} =4350, ϕ_{out} =0.7 , Re_{in} 4250, ϕ_{in} =1.4, and inner swirl number=0.72

Future Work with KDSB

- Effect of pressure on NO emissions and flame stability.
- Flow field measurements using PIV.

Research Center

Turbulent Flame Speeds of Ammonia

- Experiment: propagating spherical flames in a high pressure high temperature turbulent constant volume combustion chamber
- The normalized turbulent flame speed, S_{T,b}/S_{L,b} decreases with increasing the O₂ content. This is mainly due to increasing S_{L,b} with O₂ content
- O_2 content is defined as: $\eta_{02} = X_{02}/(X_{02}+X_{N2})$

100% Green ammonia combustion in CCGT LCOE of Ammonia direct firing in CCGT (167 • USD/MWh) on par with NG CCGT with CCS in 2040 \$350 Coal+CCS, Bio-energy+CCS and Nuclear are costlier \$300 \$228 \$224 CO2 Price (\$140/ton) \$195 \$197 \$177 The additional costs of 30 USD/MWh for Ammonia • \$165 \$167 0&M cracking to produce Hydrogen → Gas turbine OEMs Fuel Cost should prioritize achieving a more ammonia CAPEX compatible turbine technology in the long term CCGT CCGT Phase 2 Phase 3 (70% (100% /30%) NH3) Gas CCGT CCGT Coal +CCS Gas CCGT Nuclear **S-50** (2040) Phase 1 BECCS (100% H2) (2020)+CCS +CCS (2020) (2040) S-100 (2040) GREEN AMMONIA \$380/ton (2040) FOSSIL FUEL OTHER Projected costs in 2040 Cesaro, Zac, et al. "Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants." Applied Energy 282 (2021): 116009. 2

Objectives of this study

Measure a large database of chemiluminescence in NH₃-CH₄ flames Identify promising excited radicals for NH₃-CH₄ flame sensors

Experimental setup

Data post-processing

Results and discussion

Conclusions

Experimental setup

్రీ

- Ammonia volume fraction in the fuel blend was varied (X_{NH3})

Observations
The light signature of laminar ammonia-methane-air flames was examined in details
• In addition to NH ₂ * (yellow/orange hue), 6 excited radicals contribute to the chemiluminescence in the UV-blue region
Such richness is a blessing for the development of chemiluminescence-based flame sensors
· Potential applications include the detection of harmful emissions (NO, NH3, CO), fluctuations of fuel blend composition, and flame instabilities
For more details, see Zhu et al. <i>Combustion and Flame</i> 2021 (in press) https://doi.org/10.1016/j.combustflame.2021.111508

NH₃-hydrocarbon applications

An intermediate step in the transition to hydrogen and ammonia is the blending of these fuels with hydrocarbons.

Ammonia engine (left); mixing system of ammonia and dimethyl ether (right).

NH₃ and secondary fuel engine [1-2]

NH₃-coal furnace [3-4]

1. A.J. Reiter, S.-C. Kong, Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel, 90 (2011), pp. 87-97 3 Mar Conving, Philipsian Barket Bark, Millik (2018), Conversion of the State Conversio

🐙 C.R.1. of E.P.1. (CRIEPI), Heading towards implementation to use Ammonia for coal power plant: developing a technology to create pulverized coal to reduce the discharge of nitrogen oxides, (2017).
NH₃-hydrocarbon emission

Diversification of pollutants:

1. Soot: having negative effect on combustion efficiency, human health, and the environment.

2. Polycyclic aromatic hydrocarbon (PAH): can react with DNA, increase the risk of cancer in humans.

3. Nitro-PAH: are more toxic than PAH.

- 4. NOx and N₂O: Harmful for human and environment (eg: Photochemical smog in Los Angeles in 1944).
- 5. HCN: concentration of 100–200 ppm in breathing air will kill a human within 10 to 60 minutes.
- 6. NH₃: Toxic gas.

7. CO₂: greenhouse gas

Soot morphology in NH₃-C₂H₄ coflow flame

- The addition of different additives all lead to the reduction of the soot formation at each sampling point.
- The effect of NH₃ addition is the most significant.
- Few soot particles can be observed from the image at HAB of 10 mm, suggesting a low nucleation rate near the burner.

Li, Qianqian, Chen Song, Zhiyu Yan, Xun Cao, Jinhua Wang, and Zuohua Huang. Effects of NH3/H2/N2 addition on soot morphology and nanostructure in laminar co-flow ethylene diffusion flame. International Journal of Hydrogen Energy 47. 36 (2022): 16321-16334

Soot formation in NH₃-HC flames

- NH₃ chemically inhibits soot formation both in CH₄ and C₂H₄ flames. The suppression effect is roughly proportional to the fraction of NH₃ introduced.
- Soot inception and growth are both slowed down with NH₃ addition.
- The soot reduction by NH₃ addition is insensitive to the burner type (Premix, counterflow, and coflow) and hydrodynamic (laminar and turbulent).
- The soot reduction by $\rm NH_3$ introduction can not be fully explained by the higher $\rm H/\rm H_2$ concentrations.

Clean Combustion Research Center

Outline

- 1. NH₃-hydrocarbon application
- 2. Soot formation

3. PAH formation

- 4. Kinetic modeling
- 5. Role of HCN in PAH formation
- 6. Future work

Research Center

PAH formation in NH₃-HC flames

- The formation of 1-2 ring aromatic species (LIF-UV) is marginally sensitive to NH₃ chemistry
- The formation of large aromatic species (LIF-Visible) is greatly suppressed by NH₃ chemistry.
- The PAH reduction by NH₃ addition is very sensitive to flame temperature and dilution ratio.

Clean Combustion Research Center

CN chemistry in NH₃-HC combustion

The most applied CN chemistry used to explain PAH reduction is from *P. Glarbort et al.* 2018, Which is limited to C_2 species.

[HTML] Modeling nitrogen chemistry in combustion

P.Glarborg, JA Miller, B.Ruscic... - ... in energy and combustion ..., 2018 - Elsevier

... nitrogen species (amines, cyanides, etc.), and interactions between the hydrocarbon and nitrogen chemistry (... review is based on work on nitrogen chemistry published over the last 40 ...

☆ Save 57 Cite Cited by 603 Related articles All 7 versions Web of Science: 395

For example:

1) ABF-PAH mechanism + P. Glarbort mechanism for modeling NH₃-C₂H₄-O₂-Ar premix flame (*Combustion and Flame 235 (2022): 111698*)

2) KM2 hydrocarbon-PAH mechanisms + P. Glarbort mechanism for modeling NH₃-C₂H₄-O₂-N₂ counterflow flame. (*Fuel 308 (2022): 122003*)

3) n-heptane mechanism + P. Glarbort mechanism for modeling premixed n-heptane-NH₃ blending flames. (*Fuel Processing Technology 214 (2021): 106682.*) and ethylene-ammonia coflow flame (*Fuel 307 (2022): 121914*)

Clean Combustie

- The model was able to capture changes in C_2H_2 , C_6H_6 , and f_v with increasing N_2 addition to the fuel.
- The model was unable to capture changes in C_2H_2 , C_6H_6 , and f_v with increasing **NH₃ addition** to the fuel.
- This disagreement is attributed to a lack of chemical pathways in the underlying mechanism that describe the interaction of NH₃ and its decomposition products with C3 or greater hydrocarbons.

Kinetic modeling of NH₃-HC flames

- The inhibiting effect of NH₃ addition on C₂H₂, C₆H₆ and some important HC species can not be captured by current mechanism.
- The reactions of C_6H_6 formation are inhibited due to the decreased concentrations of C_2H_2 , CH_3 , and C_3H_3 .
- The reductions of large PAHs and C₂H₂ will inhibit soot nucleation and surface growth processes, resulting in reduction of the total loading of soot.
- A detailed mechanism describing the nitrogen-fuel interactions with higher hydrocarbons, C3 and higher, and PAHs is required to be explored in future studies.

Clean Combustion
Research Center

Outline

- 1. NH₃-hydrocarbon application
- 2. Soot formation
- 3. PAH formation
- 4. Kinetic modeling
- 5. Role of HCN in PAH formation
- 6. Future work

Soot (LII and SMPS)

NH₃ and NOx (FTIR)

Clean Combustior Research Center

PAH (LIF and GCMS)

HCN and CO₂ (GCMS)

Scheduled experimental plan.1) HCN and NH₃ addition content.

- Fuel: ethylene and methane.
- Test targets: Pollutants concentration.
- 4) Burner: co-flow, counter-flow, and swirling burners.

Lecture 6: Practical considerations

Numerical conditions	
Parameter	Conditions
Reduced electric field (<i>E/N</i>)	100–1000 Td, 100 Td-interval Covering a normal range of NTP
Gas temperature (<i>T</i> _g)	300–1000 K, 100 K-interval Full conversion between 900–1000 K
Gas composition (Y _i)	NH ₃ 100, 75, 50, 25 vol% replacing with N ₂ , H ₂
attract (State assets assets), pages Reg Research Center	

Objective of the Nitridation Project

Ammonia metal compatibility studies at elevated pressures and temperatures

Clean Combustion Research Center

Corrosion Rig Operated for extended hours at high temperatures & pressures

Interior of rig post rupture

External ejecta→ Heater Coils

Redesign (Third Iteration)

New Ceramic in Sections

Research Center

High Flow/Higher Pressure

The tank did not provide enough pressure to continue testing.

Solution:

Heated water bath

Abatement System

Ammonia Condenser

Liquid ammonia supply system High pressure tests

37

Conclusion number 1

• The direct use of ammonia as a fuel in the combustion and energy system can be a reliable and efficient way of transporting and consuming hydrogen. However, care must be taken to overcome its poor combustion characteristics, such as low propagation speed, high ignition delay time, narrow flammability limits, and low flame radiation and temperature.

Conclusion #2

 Dual-fuel combustion, or co-firing, is currently the more common strategy to enhance ammonia's slow chemistry and low reactivity. Literature is reviewed showing different combustion promoters blended with ammonia, such as hydrogen (pure, or partially cracked ammonia), methane, carbon monoxide, syngas, DME, DEE, and DMM. Hydrogen was found to be the most effective ammonia combustion promotor, and methane was found to be the least effective combustion promotor among the fuels tested in the literature.

Research Center

Conclusion #3

Ammonia combustion chemistry differs significantly between lean and rich conditions. Burning ammonia under lean conditions feature a high O/OH radical pool, and HNO acts as an intermediate in fuel NOx production. Under rich combustion, abundant NH_i radicals are formed with the H radical pool, producing NNH due to NH_i recombination reaction. N₂ can be produced through the N₂O and NNH intermediate channels, resulting in thermal De-NOx processes. In recently advanced mechanisms, the low-temperature favored H₂NO pathway and the high-pressure favored NH_i re-combination reactions are seen to play a vital role in ignition delay time and flame speed prediction, but still have undesirably high uncertainties. NO sensitivity is fuel composition-dependent, and the burning rate-sensitive reactions are also responsible for the NO production due to the enhancement or reduction of the O/H radical pool. Increasing the pressure is seen to decrease the O/H radical pool and thus the NO emissions.

Conclusion #4

• In NH₃-H₂-air flames, hydrogen addition promotes a larger O/H radical pool without changing the oxidation pathway of ammonia. This leads to the observed higher burning velocity and NO_x generation as compared to NH₃-air flames. Reactions between N-containing radicals and OH/NO and H₂NO oxidation become more critical with H₂ substitution. HO₂ and NO₂ are more dominant than N-related small species during the low-temperature oxidation stage. Newly opened chain branching channels of NH, NNH, and N₂O dominate at elevated temperatures. Methane addition plays a similar role to ammonia oxidation by enriching the O/H radical pool and HO₂. Reactions CH₃ + NO₂ = CH₃O + NO and NO + HO₂ = NO₂ + OH are seen to play a catalytic cycle role in methane oxidation, and they are the significant C-N interaction reactions in the ignition stage of ammonia-methane flames.

Conclusion #5

Flame speed measurements in NH₃ blended with hydrocarbons, syngas, and oxygenated fuels show that the dual-fuel reaction can be understood as a parallel oxidation process of each fuel, but sharing the same radical pools of H and OH. The observed discrepancies in the prediction of laminar burning velocity are strongly related to the inaccuracy of the rate parameters of the critical nitrogen family reactions. Moreover, the key reactions in the models depend on the model itself and tested target conditions. This significantly differentiates the ignition delay time reaction sensitivity and those for the flame speed, and indicates the need to improve the capability of chemical kinetics model predictions by expanding their target flame conditions and investigating the C-N crossing reactions.

Conclusion #6

• Ammonia blend utilization in gas turbines and practical devices show continued attention and significant progress; however, the optimization of flame stability and NOx mitigation remains critical challenges. Two-stage combustion has received much attention recently for its ability to reduce NOx and its efficiency. This has been demonstrated over a wide range of operating conditions. Other NOx mitigation strategies continue to be explored, including very lean burning, flameless combustion, and humidification. Moreover, the ammonia spray flame is receiving close attention as a combustion system to reduce the cost and complexity associated with ammonia evaporation upstream of the combustors. A significant issue facing the ammonia spray flame is the fast cooling of the reactants in the vicinity of the injectors due to the large heat of vaporization of liquid ammonia.

Research Center

Exhaust Section

- Reduces to a 6" pipe to send to vertical exhaust line
- Elbow and piping is not internally insulated
- Needle valve is manually adjusted to maintain chamber pressure
- Need to check weld ratings for NH3
- Emergency Exhaust
 - In case the main line gets clogged

