TSINGHUA-PRINCETON-COMBUSTION INSTITUTE 2022 SUMMER SCHOOL ON COMBUSTION

COMBUSTION IN MICROGRAVITY AND MICROSCALE

Kaoru Maruta Tohoku University July 14-15, 2022

TSINGHUA-PRINCETON-COMBUSTION INSTITUTE

Schedule									
Beijing	July 11	July 12	July 13	July 14	July 15				
Time	(Mon.)	(Tue.)	(Wed.)	(Thu.)	(Fri.)				
			Mechanism		Mechanism				
			Reduction and		Reduction and				
08.00			Stiff		Stiff				
08.00			Chemistry		Chemistry				
~			Solvers		Solvers				
11.00			Tianfeng Lu		Tianfeng Lu				
			VMN:		VMN:				
			52667557219		52667557219				
		Virtual		Virtual					
*10.00		Poster		Lab					
10.00		Session		Tour					
~		10:00~12:00		10:00~12:00					
12.00		VMN:		VMN:					
		388239275		231842246					
14:00	Fm	Fundamental of Flames		Combustion in Microgravity					
~	I'u			and Microscale					
17:00	7	7MN: 4230031	1g 310/	Kaoru Maruta					
Session I	V MIN: 42399313194			VMN: 71656262918					
14:00	Se	Not		Current Status of Ammonia					
~	Markus Kraft VMN: 39404905340			Com	bustion				
17:00				Willian	n Roberts				
Session II				VMN: 80	506726244				
19:00	19:00 Combustion Chemistry and Kinetic Mechanism Development 22:00 Tiziano Faravelli Session I VMN: 35989357660								
~									
22:00									
Session I									
19:00	Combustion Fundamentals of Fire Safety								
~	2 José Torero :00 VMN: 57002781862								
22:00									
Session II									

2022 SUMMER SCHOOL ON COMBUSTION

Note:

¹Session I and Session II are simultaneous courses.

²VMN: Voov Meeting Number

Guidelines for Virtual Participation

1. General Guidelines

• Tencent Meeting software(腾讯会议) is recommended for participants whose IP addresses

locate within Mainland China; Voov Meeting (International version of Tencent Meeting) is recommended for other IP addresses. The installation package can be found in the following links:

a) 腾讯会议

https://meeting.tencent.com/download/

- b) Voov Meeting https://voovmeeting.com/download-center.html?from=1001
- All the activities listed in the schedule are "registrant ONLY" due to content copyright.
- To facilitate virtual communications, each participant shall connect using stable internet and the computer or portable device shall be equipped with video camera, speaker (or earphone) and microphone.

2. Lectures

- The lectures are also "registrant ONLY". Only the students who registered for the course can be granted access to the virtual lecture room.
- To enter the course, each registered participant shall open the software and join the conference using the corresponding Voov Meeting Number (VMN) provided in the schedule; only participants who show unique identification codes and real names as "xxxxx-Last Name, First Name" will be granted access to the lecture room; the identification code will be provided through email.
- During the course, each student shall follow the recommendation from the lecturer regarding the timing and protocol to ask questions or to further communicate with the lecturer.
- For technical or communication issues, the students can contact the TA in the virtual lecture or through emails.
- During the course, the students in general will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.

3. Lab Tour

- The event will be hosted by graduate students from Center for Combustion Energy, Tsinghua University and live streamed using provided Voov Meeting Number.
- During the activity, the participants will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.
- Questions from the virtual participants can be raised using the chat room.

4. Poster Session

- The event will be hosted by the poster authors (one Voov Meeting room per poster) and live streamed using provided Voov Meeting Number.
- During the activity, the participants will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.
- Questions from the virtual participants can be raised using the chat room or request access to audio and video communication.

Teaching Assistants

• Fundamentals of Flame (Prof. Suk Ho Chung)

TA1: Hengyi Zhou (周恒毅); zhouhy19@mails.tsinghua.edu.cn

TA2: Xinyu Hu (胡馨予); hxy21@mails.tsinghua.edu.cn

• Combustion Chemistry and Kinetic Mechanism Development (Prof. Tiziano Faravelli) TA1: Shuqing Chen (陈舒晴); chen-sq19@mails.tsinghua.edu.cn

TA2: Jingzan Shi (史京瓒); sjz21@mails.tsinghua.edu.cn

• Current Status of Ammonia Combustion (Prof. William Roberts) TA1: Yuzhe Wen (温禹哲); wyz20@mails.tsinghua.edu.cn

TA2: Haodong Chen (陈皓东); chd20@mails.tsinghua.edu.cn

• Soot (Prof. Markus Kraft)

TA1: Yuzhe Wen (温禹哲); wyz20@mails.tsinghua.edu.cn

TA2: Haodong Chen (陈皓东); chd20@mails.tsinghua.edu.cn

• Combustion Fundamentals of Fire Safety (Prof. José Torero)

TA1: Xuechun Gong (巩雪纯); gxc19@mails.tsinghua.edu.cn

TA2: Weitian Wang (王巍添); wwt20@mails.tsinghua.edu.cn

• Combustion in Microgravity and Microscale (Prof. Kaoru Maruta)

TA1: Hengyi Zhou (周恒毅); zhouhy19@mails.tsinghua.edu.cn

TA2: Xinyu Hu (胡馨予); hxy21@mails.tsinghua.edu.cn

• Mechanism Reduction and Stiff Chemistry Solvers (Prof. Tianfeng Lu)

TA1: Shuqing Chen (陈舒晴); chen-sq19@mails.tsinghua.edu.cn

TA2: Jingzan Shi (史京瓒); sjz21@mails.tsinghua.edu.cn

TOHOKU FS TOHOKU 2022 Kaou MARUTA	I GRI-Mech Version 3.0 730/99 CHEMKINI Iomnat I See READNED file at anonymen FT Pet service structure, directory gri; I Work/Wide/Web home page http://www.me.berkeley.edu/gri_mech/ or I brough http://www.gri.orgunder/ Brasic: Research; I for additional information, contacts, and disclaimer ELEMENTS O H C N AR END	GRI-Mech 3.0 (1999) GRI-Mech 3.0, <http: gri_mech="" www.me.berkeley.edu=""></http:> .	28
	SPECIES H2 H O 02 OH H2O H2O2 C CH CH2 CH2(S) CH3 CH4 CO2 HCO H2O H2O CH3OH CH4 C2H4 C2H3 C2H4 C2H5 CH3OH CH4 C2H4 C2H3 H2 H3 NH NO NO NH H2 H3 NH NH NO NO NH H4 NH NH NH NH NH NH NH NH NH	53 species	
	1 III.2014 Iseri GRI-Mech thermodynamics here or use in default file IPAD REACTIONS 2014/Ker⇒02+M 12/2.40/ IPAD/15.40/ CH4/ 2.00/ CO/ 1.75/ CO2/ 3.60/ C2H6/ 3.00/ AR/ .83/	327 reactions	
	U+HMK=>O(H+M) 5.000E+17 -1.000 -1.001 U+22.001 HC3000 CH4/2.00 CO13.000 C22.001 HC30.000 C21.001 -1.001 0+HO2=>>O(H+O2 2.000E+13 0.000 0 -0.001 0+HO2=>>O(H+O2 9.000E+13 0.000 0 0 -0.001 0+HO2=>>O(H+O2 9.000E+13 0.000 0.00 0 -0.01 -0.	$k_{f_i} = A_i T^{\beta_i} \exp\left(\frac{-E_i}{P_i T}\right)$	
	O+CH4RSOHT-CH3 1.020E+00 1.300E+100 2.0		
	0+0H20H 1.300E+05 2.500 5000.00 0+0H2H 0+00 1.30E+07 2.000 100 0+0H2H 1.30E+07 2.000 100.00 0 0+0H2H 4.800E+19 2.000 100.00 0 0+0H2H2 4.800E+19 1.410 2895.00 0 0+0H2H2 6.840E+08 2.000 1900.00 0 0+0H2H3 0.800E+13 0.00 0.00 0 0+0H2H4 1.250E+07 1.830 220.00	+ Transport data Thermodynamic data	
	0+C2H5 C+3H3CH2C 2.240E+13 .000 0.0 0+C2H6 C+2H6 8.980E+07 1.820 5600.00 0+CH2CO C+14 .000 .00 0+CH2CO 1.000E+14 .000 .00 0+CH2CO 1.000E+14 .000 .00 0+CH2CO .000E+14 .000 .00 0+CH2CO 1.000E+13 .000 8000.00 0+CH2CO 1.750E+12 .000 1350.00	↓ Cont'd	

Simplification of governing equations

Additional assumptions

An overall one-step reaction in lean flame is assumed. Expression of fuel reaction rate is written as follows.

 $\dot{\omega}_F = \overline{A}Y_F\overline{Y_G} e^{-\frac{T_a}{T}}$ Assumed as nearly constant in lean flame $\dot{\omega}_F = \overline{A}Y_F e^{-\frac{T_a}{T}}$

Instead of N species fractions, tracking only: Y_{F} if Y_{o} =const. is assumed.

Assuming all Lewis numbers equal to unity

 $\rho u = \text{constant} = \rho_1 u_1 = \rho_1 S_L$

$$\rho_1 S_L \frac{dY_F}{dx} = \frac{d}{dx} \left(\rho D \frac{dY_F}{dx} \right) + \dot{\omega}_F$$
$$\rho_1 C_p S_L \frac{dT}{dx} = \frac{d}{dx} \left(\lambda \frac{dT}{dx} \right) - Q \dot{\omega}_F$$

Can be simply solved -> extensively used in Combustion Theory, Williams, Linan, Clavin, Matalon...

T. Poinsot, Princeton SS Lecture note, 2015.

37

 $Le = \frac{\alpha}{D}$ where $\alpha = \frac{\lambda}{\rho C_n}$

Adiabatic one-dimensional premixed flame

- Ideal flame is hard to realize because...
- Effect of heat loss
- · Effect of flow non-uniformity
- Effect of wall (Thermal and chemical)
- · Intrinsic flame instabilities
- Thus, measurement of laminar burning velocity needs various ideas & technique
- Laminar burning velocity → (eigenvalue of the governing equations) essential for chemical time determination, kinetics developments, etc.

41

IFS

Combustion in Microgravity and Microscale Part 2: Microgravity combustion

Kaoru MARUTA Institute of Fluid Science Tohoku University

Тоноки

Low-speed counterflow flame experiments in microgravity for comprehensive combustion limit theory (2010-)

47

Constructing comprehensive combustion limit theory which covers both conventional flames and flame ball based on low speed counterflow flames under microgravity

• Super-adiabatic combustion and super-lean combustion are available and of use for better thermal efficiency.

