TSINGHUA-PRINCETON-COMBUSTION INSTITUTE 2022 SUMMER SCHOOL ON COMBUSTION

FUNDAMENTAL OF FLAMES

Suk Ho Chung King Abdullah University of Science and Technology July 11-13, 2022

TSINGHUA-PRINCETON-COMBUSTION INSTITUTE

			Schedule		
Beijing	July 11	July 12	July 13	July 14	July 15
Time	(Mon.)	(Tue.)	(Wed.)	(Thu.)	(Fri.)
			Mechanism		Mechanism
			Reduction and		Reduction and
08.00			Stiff		Stiff
08.00			Chemistry		Chemistry
~			Solvers		Solvers
11.00			Tianfeng Lu		Tianfeng Lu
			VMN:		VMN:
			52667557219		52667557219
		Virtual		Virtual	
*10.00		Poster		Lab	
10.00		Session		Tour	
~		10:00~12:00		10:00~12:00	
12.00		VMN:		VMN:	
		388239275		231842246	
14:00	Fm	ndomontal of I	Tamos	Combustion in Microgravit	
~	I'u	Suk Ho Chung VMN: 42399313194		and Microscale Kaoru Maruta	
17:00	1				
Session I			5174	VMN: 71	656262918
14:00	Se	Not		Current Stat	us of Ammonia
~	Marku	s Kraft		Combustion	
17:00	VMN: 30/	10/10053/10		Willian	n Roberts
Session II	v IVII (, 37-	107703370		VMN: 80	506726244
19:00	Com	hustion Chami	stry and Kinatic N	Machanism Dav	Jonmont
~	Com	Sustion Chem	Tiziano Faravel		clopinent
22:00			VMN: 35989357	660	
Session I			v Ivii (. 55767557	000	
19:00	Con	nbustion Fund	amentals of Fire S	Safety	
~	Con	Incustion Fully	é Torero	Jaiety	
22:00		VMN· 4	57002781862		
Session II		V IVII 4	7002701002		

2022 SUMMER SCHOOL ON COMBUSTION

Note:

¹Session I and Session II are simultaneous courses.

²VMN: Voov Meeting Number

Guidelines for Virtual Participation

1. General Guidelines

• Tencent Meeting software(腾讯会议) is recommended for participants whose IP addresses

locate within Mainland China; Voov Meeting (International version of Tencent Meeting) is recommended for other IP addresses. The installation package can be found in the following links:

a) 腾讯会议

https://meeting.tencent.com/download/

- b) Voov Meeting https://voovmeeting.com/download-center.html?from=1001
- All the activities listed in the schedule are "registrant ONLY" due to content copyright.
- To facilitate virtual communications, each participant shall connect using stable internet and the computer or portable device shall be equipped with video camera, speaker (or earphone) and microphone.

2. Lectures

- The lectures are also "registrant ONLY". Only the students who registered for the course can be granted access to the virtual lecture room.
- To enter the course, each registered participant shall open the software and join the conference using the corresponding Voov Meeting Number (VMN) provided in the schedule; only participants who show unique identification codes and real names as "xxxxx-Last Name, First Name" will be granted access to the lecture room; the identification code will be provided through email.
- During the course, each student shall follow the recommendation from the lecturer regarding the timing and protocol to ask questions or to further communicate with the lecturer.
- For technical or communication issues, the students can contact the TA in the virtual lecture or through emails.
- During the course, the students in general will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.

3. Lab Tour

- The event will be hosted by graduate students from Center for Combustion Energy, Tsinghua University and live streamed using provided Voov Meeting Number.
- During the activity, the participants will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.
- Questions from the virtual participants can be raised using the chat room.

4. Poster Session

- The event will be hosted by the poster authors (one Voov Meeting room per poster) and live streamed using provided Voov Meeting Number.
- During the activity, the participants will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.
- Questions from the virtual participants can be raised using the chat room or request access to audio and video communication.

Teaching Assistants

• Fundamentals of Flame (Prof. Suk Ho Chung)

TA1: Hengyi Zhou (周恒毅); zhouhy19@mails.tsinghua.edu.cn

TA2: Xinyu Hu (胡馨予); hxy21@mails.tsinghua.edu.cn

• Combustion Chemistry and Kinetic Mechanism Development (Prof. Tiziano Faravelli) TA1: Shuqing Chen (陈舒晴); chen-sq19@mails.tsinghua.edu.cn

TA2: Jingzan Shi (史京瓒); sjz21@mails.tsinghua.edu.cn

• Current Status of Ammonia Combustion (Prof. William Roberts) TA1: Yuzhe Wen (温禹哲); wyz20@mails.tsinghua.edu.cn

TA2: Haodong Chen (陈皓东); chd20@mails.tsinghua.edu.cn

• Soot (Prof. Markus Kraft)

TA1: Yuzhe Wen (温禹哲); wyz20@mails.tsinghua.edu.cn

TA2: Haodong Chen (陈皓东); chd20@mails.tsinghua.edu.cn

• Combustion Fundamentals of Fire Safety (Prof. José Torero)

TA1: Xuechun Gong (巩雪纯); gxc19@mails.tsinghua.edu.cn

TA2: Weitian Wang (王巍添); wwt20@mails.tsinghua.edu.cn

• Combustion in Microgravity and Microscale (Prof. Kaoru Maruta)

TA1: Hengyi Zhou (周恒毅); zhouhy19@mails.tsinghua.edu.cn

TA2: Xinyu Hu (胡馨予); hxy21@mails.tsinghua.edu.cn

• Mechanism Reduction and Stiff Chemistry Solvers (Prof. Tianfeng Lu)

TA1: Shuqing Chen (陈舒晴); chen-sq19@mails.tsinghua.edu.cn

TA2: Jingzan Shi (史京瓒); sjz21@mails.tsinghua.edu.cn

Contents
Molecules, Reaction
Transport Phenomena : Diffusion
Governing Equations
Chemical Kinetics
Diffusion Flames
Premixed Flames
Flames in Partially-Premixed System
Engine Fuels
Clean Combustion Research Center 🧐 KAUST

Molecular Col	lision
 Consider 1D head-on collision Collision radius R_{ij} = (d_i+d_i)/2 Collision cross-section: σ_{ij} = π (d_i+d_i)²/4 	
 Sweep volume / time: σ_{ij} υ <i>i</i>-molecule w/ rel. vel. υ 	$\circ n_1 n_2$
• Collision frequency of <i>i</i> -molecule wrt <i>j</i> :	
$n_{j} \sigma_{ij} v$ $- n : \# \text{ of molecule/vol}$ $- \text{ Mean free path } \lambda = v t/n \sigma vt = 1/n\sigma$ $- (\text{consider } v \text{ is the mean vel})$	
• Total collision frequency : $n_i n_j \sigma_{ij} v$	$ \begin{array}{c} & & & \\ & &$
	http://www.everyscience.com/Chemistry/Physical/Gases/c.1255.php Clean Combustion Research Center

	Reaction Rate
• ,	<i>k</i> -th step RR $\omega_k = k_k \prod_{j=1}^N c_j^{n_{j,k}} = k_k \prod_{j=1}^N \left(\frac{X_j p}{R^{o_T}} \right)^{n_{j,k}}$
	- $k_k(T)$: specific reaction rate constant for <i>k</i> th step - $n_{j,k}$: reaction order of <i>j</i> th species in <i>k</i> th step (overall reaction)
	$\mathbf{CH}_4 + \mathbf{2O}_2 \leftrightarrow \mathbf{CO}_2 + \mathbf{2H}_2 \mathbf{O} \qquad \omega = k X_{CH_4}^{n_{CH_4}} X_{O_2}^{n_{O_2}} (p / R^o T)^{n_{CH_4} + n_{O_2}}$
	$-n_j$: not necessarily natural number
	$\sum_{j=1}^{N} n_{j,k} = n_{tot} \qquad \text{Overall reaction order}$
•	Elementary Reaction
	- Reaction occurs in molecular level ($n_{tot} = 1,2,3$)
	$- n_{j,k}$ molecularity : # molecules involved in collision, natural number
	Unimolecular reaction : 1 st order
	Bimolecular reaction : 2^{nd} order $H + O_2 \rightarrow OH + O$
	Termolecular reaction : 3^{rd} order $H + H + M \rightarrow H_2 + M$ (recombination)
	Clean Combustion Research Center 😵

	Primary	Diffusion Pro	ocess
Primar	ry diffusion r	ate	
– Cha	racteristic sprea	ading of area per unit t	ime [L ² /T]
Process	Driving force	Transport coefficient	Diffusion rate [cm ² /s]
momentum	velocity gradient	viscosity µ	kinematic viscosity $v = \mu / \rho$
energy	temperature gradient	thermal conductivity λ	thermal diffusivity $\alpha = \lambda / \rho C_p$
mass	concentration gradient	binary diffusion coeff. D _{ij}	Mass diffusivity D _{ij}
 Soret eff Mass Ther Can Dufour Heat 	fect s diffusion arising mal diffusion be non-negligible effect t diffusion from o	g from temp gradient e for light molecule, e.g., h concentration gradient	nydrogen
– Gene	erally negligible c	compared to primary diff	usion

Shvab-Zel'dovich Form	ulation (1-step)
$\rho \frac{\partial Y_i}{\partial t} + \rho \vec{v} \cdot \nabla Y_i - \nabla \cdot (\rho D_i \nabla Y_i) = \omega_i$	
$\rho \frac{\partial (C_p T)}{\partial t} + \rho \vec{v} \cdot \nabla (C_p T) - \nabla \cdot \{ \frac{\lambda}{C_p} \nabla (C_p T) \} = -\{ \sum_{j=1}^{n} \nabla (C_p T) \} = -\{ \sum_{j=1}^{n} \nabla (C_p T) \}$	$\sum h_i^o W_i(\nu_i^{"}-\nu_i')\}\omega$
• Define $\tilde{Y}_i = \frac{Y_i [W_F(v_F^* - v_F^*)]}{W_i(v_i^* - v_i^*)} \qquad \tilde{T} = \frac{C_i}{T_i}$	$\frac{\sum_{p} T[W_{F}(v_{F}^{"}-v_{F}^{'})]}{\sum_{h} h_{i}^{o} W_{i}(v_{i}^{"}-v_{i}^{'})} = \frac{C_{p} T}{Q}$
$\tilde{Y}_F = Y_F$ $\tilde{Y}_O = Y_O / \sigma$ σ : stoichiometric oxidizer to	fuel mass ratio
Q: Heat of combustion per un	nit mass of fuel consumed
$L_i(\tilde{Y}_i) = \omega[W_F(v_F' - v_F')] = \omega_F$	
$L_T(\tilde{T}) = -\omega[W_F(v_F^* - v_F')] = -\omega_F$	
If $\frac{\lambda/\rho C_p}{D_i} = \frac{\alpha}{D_i} = Le_i = 1$	Lewis number
$L_i = L_T = L \qquad L\{\widetilde{Y}_i + \widetilde{T}\} = 0$	Shvab-Zel'dovich Formulation
$\boldsymbol{\beta}_i \equiv \widetilde{\boldsymbol{Y}}_i + \widetilde{\boldsymbol{T}}$	Coupling Function
	Sigma & Q for HC Clean Combustion Research Center

Hydrogen Oxidation
 Initiation Initiation of H radical H₂ + O₂ → HO₂ + H H₂ + M → H + H + M
 Hydrogen-Oxygen Chain Reaction Chain cycle of H, O, OH
Hydroxyl Formation and Consumption : HO ₂
• Hydroperoxyl Formation and Consumption : H ₂ O ₂
 Recombination Reactions Three-body recombination : Pressure sensitivity
Clean Combustion Research Center 😵 KAUST

Reaction Modeling	
Arbitrary Approximation	$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$
 One-step overall reaction : global reaction Thermal point of view: empirical constants 	$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$ $CO + \frac{1}{2}O_2 \rightarrow CO_2$
- Semi-global reaction • Detailed (Full) mechanism - Based on kinetic data	$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$ $CO + \frac{1}{2}O_2 \rightarrow CO_2$ $H_4 \rightarrow 1O_2 - H_2O_2$
 Hierarchical : sub-mechanisms H₂, CO etc Kinetic data comprehensive & accurate? Numerical integration 	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ $C_m H_{2m+2} \rightarrow \frac{m}{2}C_2 H_4 + H_2$ $C_2 H_4 + O_2 \rightarrow 2CO + 2H_2$ $C_2 H_4 + O_2 \rightarrow CO$
 Skeletal mechanism Sensitivity analysis 	$CO + \frac{1}{2}O_2 \to CO_2$ $H_2 + \frac{1}{2}O_2 \to H_2O$
 Olny/Olnk (system response parameter/RK const) Systematic reduction Computationally demanding/ stiff problem Computationally demanding/ stiff problem 	Reduced Mechanism $3H_2 + O_2 \rightarrow 2H_2O + 2H$ $H + H + M \rightarrow H_2 + M$
 Computational singular perturbation (CSP) Quasi-Steady-State Assumption (QSSA) Directed Relation Graph (DRG) 	$CH_4 + 2H + H_2O \rightarrow CO + 4H_2$ $CO + H_2O \leftrightarrow CO_2 + H_2$ $H + H + M \rightarrow H_2 + M$ $3H_2 + O_2 \rightarrow 2H_2O + 2H$
С	lean Combustion Research Center 🛛 😵 KAUST

	Premixed Flame	Diffusion Flame		
Fuel / Oxidizer	Mixed in molecular level initially	Initially separated Molecular mixing at flame through diffusion and convection	↑ F+O	↑ F
Controlling Mechanism	Reaction Diffusion	Diffusion		
Flame Position	Wave propagation	Self-adjust to maximize flame intensity (Stoichiometry)		
F/O Consumption at Flame	Complete consumption of lean component	Complete consumption of fuel/oxidizer	٨	
Analysis	Finite rate kinetics	Infinite rate kinetics		

Characteristics of Diffusion Flames
• Reaction thickness δ_R and diffusion thickness δ_T or δ_M $\delta_R = O(\frac{RT_f}{E_a}\delta_T), \qquad \delta_R << \delta_T$
- Diffusion $\alpha \partial^2(\cdot)/\partial x^2 \approx \alpha(\cdot)/\delta_R^2$ (Jump in the gradient of parameter)
- Convection $u_o \partial(\bullet) / \partial x \approx u_o(\bullet) / \delta_R$ (Weak discontinuity)
– Reaction zone : Diffusion >> Convection
• δ_R is infinitely thin as $E_a \rightarrow \infty$
- Since E_a is large but finite, small amount of reactants leak
 Reaction broadening
 Chemical reaction could occur in much faster rate, however, reactants are supplied in slower rate by diffusion Diffusion controlled
Infinite-rate Kinetics : Flame sheet limit
 Most of flame characteristics can be determined
 Flame location, temperature, burning rate
Clean Combustion Research Center 😵 KAUST

1D Model : Flame Sheet Solution		
• In the flame sheet limit at $x = x_f$ $\tilde{T} = \tilde{T}_f \& \tilde{Y}_{F,f} = \tilde{Y}_{O,f} = 0$ $\frac{x_f}{l} = \frac{\tilde{Y}_{O,0}}{\tilde{Y}_{F,l} + \tilde{Y}_{O,0}} \tilde{T}_f = \tilde{T}_0 + (\tilde{T}_l - \tilde{T}_0 + \tilde{Y}_{F,l}) \frac{\tilde{Y}_{O,0}}{\tilde{Y}_{F,l} + \tilde{Y}_{O,0}}$	Flame	
Temperature profiles	1	
$ \begin{split} & 0 < x < x_f \ ; \ \tilde{Y}_F = 0 \colon \ \tilde{T} = (\tilde{T}_f - \tilde{T}_0)(x/x_f) + \tilde{T}_0 \\ & x_f < x < l \ ; \ \tilde{Y}_O = 0 \colon \ \tilde{T} = \tilde{T}_f + (\tilde{T}_l - \tilde{T}_f)(x - x_f)/(l - x_f) \end{split} $		
 Concentration profiles determined from S-Z function 		
 Inert profile from diffusion equation Product from ΣY_i = 1 	$V_{O} \neq P$ $V_{F} \uparrow V_{F}$	
	Clean Combustion Research Center 😵 KAUST	

Characteristic Rates		
 Liquid-vapor Phase Change Gas-phase Heat/Mass Diffusion Surface Regression Liquid-phase Heat Conduction 	$\begin{aligned} &\alpha_p \text{ (very fast)} \\ &\alpha_g \sim 10^0 \text{ cm}^2\text{/s} \\ &\alpha_s \sim (\rho_g/\rho_l) \alpha_g \sim 10^{-3} \text{ cm}^2\text{/s} \\ &\alpha_{l,t} \sim 10^{-3} \text{ cm}^2\text{/s} \end{aligned}$	
 α_p >> α_g: Equilibrium vaporization at surface (saturated vapor pressure) α_g >> α_s: Gas-phase Quasi-steadiness α_g >> α_{t,t}: Surface temp. constant during characteristic time of gas-phase transport 		
 Limitations Near critical pressure ρ_g ~ Far-field ρυr² = const: for r > 	$(\rho_l / \rho_g)^{1/2}$ then $\upsilon_g \sim \upsilon_s$	

Droplet Lifetime
 Evaporation rate Insensitive to pressure Rule of thumb : t_L ~ 1 s for D = 1mm droplet Diesel Engine 3000 rpm = 50 rps, 20 ms for 1 rev. Combustion duration 40° CA = 1/9 rev. Combustion duration 40° CA = 1/9 rev. 2 ms available : 1/500 s ~ 1/(20)² s Thus, 1/20 mm = D 50 µm size droplet High pressure injection required (200 ~ 1500 atm) Gasoline Engine Port injection, 1 rev. 20 ms = 1/50 s available Much larger droplet could be OK even considering vaporization GDI P_{inj} = 5-20 MPa into pressure of -50 kPa to 2-3 MPa depending on injection timing
Clean Combustion Research Center 😵 KAUST

Quantitative sooting metric based sooting limits		
 Existing sooting metrics Threshold soot index (TSI) Calcote and Manos, CNF 1983 Normalized smoke point (NSP) Li and Sunderland, CST 2012 Yield soot index (YSI) McEnally and Pfefferle, CNF 2007 Oxygen extended sooting index (OESI) Barrientos et al, CNF 2013 Based on smoke-point flame or co-flow flame 	A – Too high B – Correct C – Too low	
 Competition between formation and oxidation Low strain Typically pure fuel / air Dilution effect: Yelverton and Roberts, CST 2008 Subjectivity in determining smoke point position Watson et al, Fuel, 2013 Coflow velocity Yelverton and Roberts, CST 2008 	(a) Determination of the Smoke Point according to ASTM D1322 Watson et al. Fuel 2013	
64 Clean Comb	ustion Research Center 🧏 KAUST	

Introduction
 Premixed Flame : Important Parameter S_L^o Laminar Burning Velocity / Laminar Flame Speed Propagation velocity of 1D, planar premixed flame in the absence of heat loss Representing reactivity, exothermicity Essential in the design of practical devices
 • Relevant Phenomena – Flashback – Blowoff
Clean Combustion Research Center

Burning Velocity Measurement
 Difficulty : 1D planar flame is difficult to stabilize (rarely exists) Frequently flame is curved Definition of flame front for curved one is difficult Flame location depends on optical methods
 (direct photography, shadowgraphy, schlieren, interferometry) Local burning velocity For stationary surface Normal: continuity of mass flux
 Tangential: continuity of velocity Measurement Outwardly Propagating Spherical Flame Counterflow flames
Clean Combustion Research Center 😵 KAUST

Not all mixtures an Standard: US Bur – Glass tube φ=5.1 – Once flame can	e flammal eau of Mir cm, 150cm not reach th	ble tes (120-180) te top : Lit	long mit of flame p	propagation	
Fuel	Flammability (φ)		d _q	E _{min}	
	Lean	Rich	Abs min(mm)	Abs min(mJ))	
Hydrogen H ₂	0.14	2.54	0.61	0.018	
Carbon monoxide CO	0.34	6.76	_	-	
Methane CH ₄	0.46	1.64	2.0	0.29	
Propane C ₃ H ₈	0.51	2.83	1.8	0.26	
n-Octane C ₈ H ₁₈	0.51	4.25	_	_	
AcetyleneC ₂ H ₂	0.19	00	2.3 (φ =1)	0.03 (φ =1)	
MethanolCH ₂ OH	0.48	4.08	1.5	0.14	1

Aerodynamics : Flame Stretch				
 Representing Aerodynamic Effect on Flame: κ History Karlovitz, 1953 du/dy Williams, 1975 κ = (1/A)(dA/dt) [t⁻¹] Buckmaster (Acta Astro 6:741 1979), Matalon (CST 29:225 1983) Chung & Law (CNF 55:123, 1984) 				
 Curvature : (V_t ⋅ n) The effect arises from the difference between streamline (convection) and flame normal (diffusion) directions Flame temperature, burning velocity, extinction etc. Flame stretch represents the inverse of characteristic flow time Related to Damköhler number 				
Chung, Law, "An invariant derivation of flame stretch," <i>Combust. Flame</i> 55 (1984) 123-125. Clean Combustion Research Center				

Combustion Instability

省 KAUS

Clean Combustion Research Center

- Intrinsic Instability
 - Chemical kinetic instability
 - Hydrodynamic instability
 - Diffusional thermal instability

• Chamber Instability

- Acoustic instability
- Shock instability
- Fluid dynamic in chamber

• System Instability

- Feed system interaction
- Exhaust system interaction

Scales				
Turbulent Flow - System charac - Length scales : - k = 3u ¹² /2 ε= Chemical scale - Flame speed S	teristics : integral scale, = u' ³ /l	Kolmogorov scale		
- Flame uncknes	Length	Time	Velocity	
Integral scale	$l=(u^{3}/\varepsilon)$	$\tau_l = l/u'$	$u' = (2k)^{1/2}$	
Kolmogorov scale	$\eta_{\rm k} = (\nu^3 / \varepsilon)^{1/4}$	$\tau_k = (\nu/\varepsilon)^{1/2}$	$\boldsymbol{v}_{k} = (\boldsymbol{v}\boldsymbol{\varepsilon})^{1/4}$	

Critical Phenomena
Ignition/extinction
– Transient in time
 Highly abrupt process by large activation energy
- Criticality Test : Steady-state analysis
o Test whether state state solution exists?
o Ignitable or extinguishable?
– Penalties
o Time lag
o Existence of multiple solution
✓ uniqueness & physical existence should be tested from transient analysis
✓ Some process may not have steady state : transient analysis
Clean Combustion Research Center 😵 KAUST

Sample Calculations: Molecules					
• O_2 molect - Maxwe - Avogad - $d=3.1$ - $m=5.3$	 O₂ molecules at 1 atm Maxwell-Boltzmann : Avg. velocity Avogadro number N_A = 6.022 ×10²³ /mole d = 3.1 ×10⁻¹⁰ m, σ = 3.02 ×10⁻¹⁹ m² m = 5.32 ×10⁻²³ g = 5.32 ×10⁻²⁶ kg 				
Temp [K]	300	1000	2000	. 1 <i>v</i>	
n [particles/m ³]	2.69×10 ²⁵	0.806×10 ²⁵	0.403×10 ²⁵	$\lambda = \frac{1}{\sqrt{2}\sigma n} = \frac{1}{Z}$	
	2.7×10 ¹⁹ /cm ³		0.4×10 ¹⁹ /cm ³	12010	
Avg. v [m/s]	445	812	1150	$(\rho LT)^{1/2}$	
z [coll/s]	3.62 ×10 ⁹	1.98 ×10 ⁹	1.40 ×10 ⁹	$\overline{v} = \left(\frac{8\kappa I}{\pi} \right) \propto T^{1/2}$	
	3.6/ns	1.98/ns	1.4/ns	(πm)	
λ [m]	0.084 ×10 ⁻⁶	0.26 ×10 ⁻⁶	0.58×10 ⁻⁶	$z = n\sigma\overline{v} \propto PT^{-1/2}$	
	0.084 μm	0.26 μm	0.58 μm	\bar{v} T	
	84 nm	260 nm	580 nm	$\lambda = \frac{1}{z} \propto \frac{1}{P}$	
• Therma - Z = 2; - T _a /T = - exp(- - 1 s re; - WHY	l explosion ×10 ⁹ /s = 20 20000/1000)=1(quired. Reality ???)-9 1 ms	$\varphi = -\ln(\tilde{t}_e)$ $T = T_o(1 + \frac{T_o}{T_a})$ Clean	$-\tilde{t}$) • $\varphi + \cdots$) Combustion Research Center	

Flame Stabilization

Tribrachial flame and mild combustion

Classification of Flames : Mixing				
	Premixed Flame	Diffusion Flame Nonpremixed flame		0
Fuel / Oxidizer	Mixed in molecular level initially	Initially separated Molecular mixing at flame through diffusion and convection	↑ F+O	↑ F
Controlling Mechanism	Reaction Diffusion	Diffusion		
Flame Position	Wave propagation	Self-adjust to maximize flame intensity (Stoichiometry)		
F/O Consumption at Flame	Complete consumption of lean component	Complete consumption of fuel/oxidizer	٨	
Analysis	Finite rate kinetics	Infinite rate kinetics		

Partially-premixed flames?

	DCN
 ASI P₀ = Cali (ave 30 I Eac stal 	ME D6890 = 21.37 ± 0.07 bar, P _{inj} = 225 bar = bration: n-heptane IDT to be 3.78± 0.01 ms = rage of 3 runs) by adjusting temperature (818 ± K) : present 835–845 K = h run involves 15 pre-injections to create a ble operating environment for the succeeding
32 ı • For	main injections to average $DCN = 4.46 + \frac{186.6}{\tau_{id}[ms]}$ $TDT 3.1 - 6.5 \text{ ms} (DCN 33 - v+j)$
• Out	$DCN = 83.99[(\tau_{id}[ms] - 1.512)^{-0.658}] + 3.547$ side the range c
 Eac stal 32 i For Out DCI 	The present as 5–845 K the run involves 15 pre-injections to create a ble operating environment for the succeeding main injections to average $DCN = 4.46 + \frac{186.6}{\tau_{id}[ms]}$ TIDT 3.1 – 6.5 ms (DCN 33–04) the range c

IDT Measurement in IQT

Fuel Matrix						
Primary refe	rence	fuels	(PRF)			
Binary mixtu	ire of is	so-octa	ane and	d n-heptane		
Toluene refe	rence	fuels	(TRF)			
Binary mixtu	uro of T	oluno	and n-	hontano		
		contraction	anu n-			
i oiuene prin	nary re	teren	ce tue			
Ternary mixt	ure of t	oluene	e, iso-o	octane and n-heptane		
Real fuels						
FACE & Certi	ificate d	nasolii	nes			
Table 2. Fuel mat	rix of FA	CE and o	certifica			
Table 2. Fuel mat tion gasolines Fuel	rix of FA	CE and o	certifica Ref.			
Table 2. Fuel mat tion gasolines Fuel Fuel FACE A	rix of FA	CE and 0 MON 83.6	certifica Ref. COA**			
Table 2. Fuel mat tion gasolines Fuel FACE A FACE F	rix of FA RON 83.5 94.4	CE and o MON 83.6 85.8	certifica Ref. COA** COA			
Table 2. Fuel mat tion gasolines Fuel FACE A FACE F FACE I	rix of FA <u>RON</u> 83.5 94.4 70.3	CE and 0 MON 83.6 85.8 69.6	Ref. COA** COA COA			
Fuel Fuel FACE A FACE F FACE I FACE J	rix of FA <u>RON</u> 83.5 94.4 70.3 71.8	CE and o MON 83.6 85.8 69.6 68.8	Ref. COA** COA COA COA COA			
Fuel Fuel FACE A FACE F FACE I FACE J Coryton gasoline	RON 83.5 94.4 70.3 71.8 97.5	CE and o MON 83.6 85.8 69.6 68.8 86.6	Ref. COA** COA COA COA COA COA			
Fuel Fuel FACE A FACE F FACE I FACE J Coryton gasoline Haltermann gasoline	RON 83.5 94.4 70.3 71.8 97.5 91.0	CE and a MON 83.6 85.8 69.6 68.8 86.6 83.4	Ref. COA** COA COA COA COA COA COA			
Table 2. Fuel mattion gasolines Fuel FACE A FACE F FACE J Coryton gasoline Haltermann gasoline * Blending rule in K *Certificate of ana	rix of FA <u>RON</u> 83.5 94.4 70.3 71.8 97.5 91.0 Calghatgi lysis	MON 83.6 85.8 69.6 68.8 86.6 83.4 et al. (S.	Ref. COA** COA COA COA COA COA COA AE 2015-	.01-0757)		

