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Tsinghua-Princeton CISS 2025 

Combustion Chemistry 

Philippe Dagaut, CNRS, Orléans, France 

1/ INTRODUCTION 

What is combustion?  

Why combustion? 

Statistics 

Chemical Kinetics and Modeling 

Global fuel properties 

Composition of Fuels 

 

2/ EXPERIMENTAL TECHNIQUES FOR KINETIC MODELS ASSESSMENT 

Introduction 

Shock-tubes and rapid compression machines 

Flow reactors: Tubular Flow Reactors and Stirred Reactors  

Flames 

Some conclusions and perspectives 

 

3/ MODELING 

Modeling: General information  

Temperature dependencies of elementary reactions 
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Pressure dependencies 

Kinetic analyses 

Sensitivity analyses 

Pressure/Temperature dependencies and reaction pathways 

Oxidation at low-T 

Pyrolysis and high-T oxidation 

Single-fuel vs. multi-fuel components 

 

4/ POLLUTANTS: NOx formation (thermal, prompt, N2O, NNH) and reduction (SNCR, reburning) 

NOx formation 

NOx reduction 

UHC and soot 

Effect of trace species on ignition: NOx, ozone 

 

5/ COMMERCIAL FUELS, SURROGATES, BIOFUELS 

Gasoline 

Diesel 

Jet fuel 

Biofuels 

Ammonia 
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Part 1 
INTRODUCTION 

  

 
 
 
 

 
La Guerre du Feu (Quest for Fire), Jean-Jacques Annaud, 1981 
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Where is combustion? 
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What is combustion? (1/2) 
 

The oxidation of a fuel, ultimately leads to the formation of carbon dioxide, water, and heat in the case 
of organic fuels (e.g. hydrocarbons).  

Other definition: an exothermic redox reaction between a fuel (reductant) and an oxidant (e.g., oxygen 
from air)  

Incomplete combustion yields UHC and soot.  

NOx resulting from nitrogen oxidation can also be released.  

 
  

HC,NOx,COx

HC,NOx,COx

HC,NOx,COx

R+O2 RO2
RO2+NO RO+NO2
HO2+NO OH+NO2

RH+OH R+H2O

2RO2 2RO+O2, ...

RO2+HO2 RO2H+O2, ...

NO2+h NO+O; O+O2+M O3
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What is combustion? (2/2) 
 
 

Combustion involves chemical reactions, thermochemistry, kinetics, heat and mass transfer, radiation… 
 
The overall/global chemical equation, e.g. 2 H2 + O2 = 2 H2O, CH4 + 2O2 = CO2 + 2H2O, is a mass 
balance that does inform on the reaction pathways to products. 
 
Equivalence ratio and excess air: 

φ= {[Fuel]/[O2]} / {[Fuel]/[O2]} at stoichiometry 

λ = 1/φ 

2 H2 + O2 = 2 H2O    φ=1 and λ = 1 (stoichiometric mix) 
3 H2 + O2 = 2 H2O + H2   φ>1 and λ < 1 (fuel-rich, excess of fuel, some left over) 
2 H2 + 2 O2 = 2 H2O + O2   φ<1 and λ > 1 (fuel-lean, excess of oxygen, some left over) 
 
The combustion of methane involves a long sequence of elementary reactions (initiation, propagation, 
branching, and termination). They involve stable species and labile species (atoms, radicals). These 
reactions proceed with reaction rates ranging from slow (e.g., RH+O2) to very fast (R+R’). 
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Why combustion? 
 
Transport accounts for ca. 20% of the total global primary energy consumed, ca. 23% of CO2 
emissions, ca. 7 billion tons of CO2. 
 
> 99.9%Transport is powered by I.C. engines (land and marine) and air transport by GT. 
 

 
 
The global demand for transport energy is ca. 105 TWh of liquid fuel energy/day (38,325 TWh/year) 
 
In 2016 the consumption of wind and solar energy together reached 1,292 TWh/year.  

In 2016 the consumption of electricity reached almost 25,000 TWh/year.  
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² 
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World electricity production 

 
% in electricity production (2017)  From Global Energy Statistical Yearbook 2018 
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What do we burn? 
 
 

 

 

 

 

 
IEA, 2009 
 
 

98% transport fuels are oil-derived
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Sustainability: 
 
 
 
 

We need to burn cleaner 
 

We need more efficient combustion (energy production) 
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EU regulations 
 

 
  

HC (g/km)

PM (g/km)

NOx (g/km)

00.3 0.2 0.1 0.1 0.2 0.3

0.05

0.1

150

0.005

0.015

0.025

Euro 6 Diesel

CO (g/km)/10

Euro 4 Gasoline

Euro 4 Diesel

Euro 5 Diesel

Euro 5 Gasoline

HCCI (Homogeneous Charge 
Compression Ignition)

HCCI

Euro 6 Gasoline
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PM10 (<10 microns) 

 

Sources of particulates: industry, agriculture, air and ground transportation (soot, tires, brakes), homes, wild fires, 
volcanoes, soil erosion and hurricanes/tornados, sea salts… 
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PARTICULATES 

 
See also https://www.conserve-energy-future.com/causes-and-effects-of-particulate-matter.php 
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PARTICULATES and health 

 
Size in µm 
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PARTICULATES and health 
 

 

 
Source: produits.xpair.com 

 
 
N.B. PM1 (< 1 µm or 1000 nm) 

  

Large 
particulates

diffuse to blood
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PARTICULATES from i.c. engines 
 
 
 

 
 

Source: Labecki et al., Fuel (2013) https://doi.org/10.1016/j.fuel.2013.05.013 
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PARTICULATES 
 

 
 

 

                  Source: H. Bockhorn (1986) 

 

 
TEM image of soot particles generated 
by CAST 
 
Source: http://www.sootgenerator.com 
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GHG: CO2 
 

     
http://www.worldclimatereport.com            
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GHG: CO2 
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GHG 
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REDUCE CO2 EMISSIONS
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Chemical Kinetics and Modeling 
 

 
  

HC,NOx,COx

HC,NOx,COx

HC,NOx,COx

R+O2 RO2
RO2+NO RO+NO2
HO2+NO OH+NO2

RH+OH R+H2O

2RO2 2RO+O2, ...

RO2+HO2 RO2H+O2, ...

NO2+h NO+O; O+O2+M O3
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Chemical Kinetics and Modeling 
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Experimental data ↔ Model 
 
Constrain the model by using 
 
Global parameters:  Ignition delays (initiation reactions, R+O2) 
        Burning velocities (H fluxes) 
 
Detailed information:  Species concentrations (~ all processes) 
 
Initiations:   RH  R + H 
    RH  R’ + R” 
    RH + O2  R + HO2 
Propagations:  RH + X  R + HX  (X= H, O, OH, HO2, CH3, HCO, …) 
Terminations: R + H  RH   
    R’ + R”  RH  
 
Different types of ‘reactors’: ST, PF, PSR, Flames (laminar premixed, 
opposed flow), RCM, engines 
  
 



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  27 

Global vs. detailed chemistry 
 

H2 + ½ O2 = H2O: mass balance; misrepresents reaction pathways 

Global Rate = A Tn exp[-E / R T ] [ Fuel ] [ O2 ] ½ 
 

In reality, many more reactions: 

H+ H + M→H2+ M 

O + O + M→ O2 + M 

O+ H + M →OH + M 

H2+ O2 → 2 OH 

H + OH + M→H2O + M 

H2 + O → 2 OH 

OH + OH → O + H2O  

H2+ O2→HO2+ H 

H + O2→OH + O 

H2+ OH →H2O + H 

H2+ O →OH + H 

H + O2→HO2 

2 HO2→H2O2 + O2 

H2O2→2 OH 

M= collision partner, e.g. diluent 

 
The value of ki indicates how fast the reaction can proceed 

Such sets of reactions constitute a “chemical kinetic reaction mechanism”  
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Kinetics 
 
Forward reaction   A + B → C + D 

Rate = -d[A]/dt = k+ [ A ] [ B ] = A+ Tn exp[-E / R T ] [ A ] [ B ]  

Reverse reaction   C + D → A + B 

Rate = -d[C]/dt = k- [ C ] [ D ] = A- Tn’ exp[-E’ / R T ] [ C ] [ D ]  

Equilibrium constant computed from thermochemistry  Keq = k+ / k- 

k+  and/or  k- are determined experimentally or computed 

K can be obtained in tabulations (JANAF, NASA …) 
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Thermodynamics 

 

H+F2 = HF + F 

As H approaches F2, the F-F bond extends and electron 
density moves from that F-F bond into the newly 
forming F-H bond. This involves an increase in potential 
energy. 

1st law: The energy U of an isolated system is constant 

dU = dQ + dW; Q= heat absorbed by the system; w= 
work done on system 

2nd law: Mechanical energy can be transferred 
completely into heat but heat cannot be transformed 
completely into mechanical energy 

dS ≥ dQ/T; S = entropy  

dS = dQrev/T and dS > dQirrev/T 

3rd law: The entropy of a perfectly crystalline substance 
at 0°K is 0 

S = 0 at T = 0°K ( lim்→଴(𝑆) = 0 )  
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Thermodynamics 

Gibbs energy: G = H – TS 

At constant T, ∆G = ∆H – T∆S 

Equilibrium occurs at minimum G (at constant T, P) 

Equilibrium constant: ∆G° = -RT ln(K)  (° refers to the standard state) 

 

Heat capacities (p at constant pressure; v at constant volume): 

Cv = (∂U/∂T)v  Cp = (∂U/∂T)p  Cp = Cv + R (ideal gas; universal gas constant 8.314 J/mol/K) 

𝑯(𝑻𝟐) = 𝑯(𝑻𝟏) + න 𝑪𝒑𝒅𝑻𝑻𝟐
𝑻𝟏   

∆𝒓𝑯(𝑻𝟐) = ∆𝒓𝑯(𝑻𝟏) + න ∆𝒓𝑪𝒑𝒅𝑻𝑻𝟐
𝑻𝟏  
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Thermodynamics 

 

Gibbs Energy (G) indicates the spontaneity of a reaction 

G depends on Enthalpy and Entropy 

Entropy contribution increases as T increases: G = H – TS 

 

∆rG < 0 for spontaneous reaction 

∆rG > 0 for non-spontaneous reaction 
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Global fuels properties 
Cetane number, Octane number 
     Cool flame   High-T 

 
piston damaged  
by strong knock (LLNL) 

Fuel concentration vs. temperature 
 

S.I. engines: ON=100 for iso-octane (C8H18) and ON=0 for n-heptane (C7H16) 

C.I. engines: CN=100 for n-hexadecane (C16H34) and CN=0 for 1-methylnaphtalene (C11H10) 

CN=0 ; ON>100
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Dagaut et al., CST 103:1-6, 315-336 (1994). 
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RH

R

RO2

QOOH

OOQOOH

OQ’OOH + OH

OQ’O + OH

Olefin + HO2

+X

RO + RO + O2

Olefin + Carbonyl

+ OH

O2
Cyclic Ether + OH

Compound

RO2

O2

HOOQ’OOH

O2

Decomposition

HO2

RH
ROOH

RO+OH O2

R’ + Olefin
H + Olefin

-XH
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Structure-reactivity 
 

 
 
 
 

ON=0 
 

 
ON=100 

 

 
CN=100 

 
CN=0 

 

S.I. engines: ON=100 for iso-octane (C8H18) and ON=0 for n-heptane (C7H16) 

C.I. engines: CN=100 for n-hexadecane (C16H34) and 0 for 1-methylnaphtalene (C11H10) 
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 Hydrocarbons             CN 

 Paraffins 
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Hydrocarbons             CN 
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Hydrocarbons             CN 
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Hydrocarbons        RON    MON 

  Paraffins 
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Hydrocarbons         RON    MON 
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Composition of Fuels 

 
● NG: methane + higher alkanes (ca. C8) 

● LPG: region-dependent; C3–C4 alkanes and alkenes 

● Gasoline: C4–C12 hydrocarbons. Mixture of paraffins (alkanes), olefins (alkenes), 
cycloalkanes (naphthenes), aromatics 

● Kerosene (Jet A-1 fuel), standard AFQRJOS (Aviation Fuel Quality Requirements for Jointly 
Operated Systems): C6–C16 hydrocarbons. Mixture of paraffins (alkanes), cycloalkanes 
(naphthenes), aromatics and <2% alkenes.  

● Diesel: C6–C28 hydrocarbons. Mixture of paraffins (alkanes), olefins (alkenes), cycloalkanes 
(naphthenes), aromatics, naphteno-aromatics 
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Composition of Fuels: Additives to replace Pb(C2H5)4 and others 

 
(1e) Frey, F. W.; Shapiro, H. Top. Curr. Chem.1971, 16, 243−297. (f) Shapiro, H.; Frey, F. W. The Organic Compounds of Lead; 
Wiley-Interscience:  New York, 1968 

From: Organometallics 2003, 22, 25, 5154–5178  https://doi.org/10.1021/om030621b 
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3-Way catalyst to reduce (1) CO, (2) UHC, and (3) NOx (>1980) Pt/Rh/Pa 

 

 
  



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  45 

EtOH  

Production:  

Oxidation/hydratation of ethylene: C2H4 + H2O → C2H5OH 

Alcoholic fermentation of sugar (bio-ethanol): C6H12O6 → 2 C2H5OH+ 2 CO2 + Heat 

RON: 108.6 

 

 

ETBE 

Production: isobutene + ethanol + catalyst => ethyl ter-butyl ether + H2O 

RON: 110-119 
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Composition of Fuels: Additives and Emissions 
 

 

Effect of methyl ter-butyl ether, ethyl terbutyl ether, and ethanol on exhaust emissions. Change-% represents 
difference in emissions of blended fuels (15-17%) vs. non-oxygenated fuel. 

 

From : Aakko-Saksa, P., Rantanen-Kolehmainen, L., Koponen, P., Engman, A. and Kihlman, J. (2011) Biogasoline options – 
Possibilities for achieving high bio-share and compatibility with conventional cars. SAE International Journal of Fuels and 
Lubricants, 4:298–317 (also SAE Technical Paper 2011-24-0111). 
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GC analysis of a NG sample 
 
 

 
Retention time / min 

(https://www.thermofisher.com/) 
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GC analysis of a US LGP sample 

 
Retention time / min 

(https://gassite.com/) 
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GC analysis of a gasoline sample 

 
Retention time / min 

(https://www.sigmaaldrich.com) 
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GC analysis of a Jet fuel sample 

 
(Dagaut et al., CNRS) 
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GC analysis of a GtL sample 
 

 
(Egolfopoulos et al., USC) 
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GC analysis of a diesel fuel sample 

 
(Dagaut et al., CNRS) 
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GC analysis of a B20 diesel fuel sample 
 

 

(https://www.sigmaaldrich.com) 
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Summary 
 

What is combustion? The oxidation of a fuel, ultimately leads to the formation of carbon dioxide, water, 
and heat in the case of organic fuels (e.g. hydrocarbons). Other definition: an exothermic redox reaction 
between a fuel (reductant) and an oxidant (e.g., oxygen from air). Incomplete combustion yields UHC and 
soot. NOx resulting from nitrogen oxidation can also be released 

Why combustion? Transport accounts for ca. 20% of the total global primary energy consumed, ca. 23% 
of CO2 emissions, ca. 7 billion tons of CO2, ca. from livestock farming. > 99.9%Transport is powered by I.C. 
engines (land and marine) and air transport by GT. 

Chemical Kinetics and Modeling. Feed and feedback: Experimental data ↔ Model. Global parameters: 
Ignition delays (initiation reactions, R+O2), Burning velocities (H fluxes) vs. Detailed information: Species 
concentrations (~ all processes). Different types of ‘reactors’: ST, PF, PSR, Flames (laminar premixed, 
opposed flow), RCM, engines; provide complementary data. 

Global fuel properties: Cetane number, Octane number (S.I. engines: ON=100 for iso-octane and ON=0 
for n-heptane; C.I. engines: CN=100 for n-hexadecane and CN=0 for 1-methylnaphtalene 

Composition of Fuels. NG: methane + higher alkanes (ca. C8); LPG: region-dependent; C3–C4 alkanes 
and alkenes; Gasoline: C4–C12 hydrocarbons. Mixture of paraffins (alkanes), olefins (alkenes), cycloalkanes 
(naphthenes), aromatics; Kerosene (Jet A-1 fuel), C6–C16 hydrocarbons. Mixture of paraffins (alkanes), 
cycloalkanes (naphthenes), aromatics and <2% alkenes; Diesel: C6–C28 hydrocarbons. Mixture of paraffins 
(alkanes), olefins (alkenes), cycloalkanes (naphthenes), aromatics, naphteno-aromatics; Additives: EtOH, 
ETBE. 
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Part 2 
 

EXPERIMENTAL TECHNIQUES FOR KINETIC 
MODELS ASSESSMENT 
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1. Introduction 

Chemical kinetic reaction mechanisms for combustion, either hand-written or automatically generated, 

rely on experimental data obtained over a large range of conditions.  

However, combustion is a complex, generally exothermic, phenomenon involving strongly coupled 

chemical processes (reaction kinetics) and physical processes (diffusion and heat transfer). Thus, in 

order to better assess chemical kinetic reaction mechanisms, it is preferable to design experiments 

were the complexity of physical processes is minimized and the accuracy of the data is maximized. 

 

This is the case for ideal reactors such as plug-flow reactors, perfectly stirred reactors, and shock-

tubes.  

 

In practice, the experiments should be performed under conditions were ideal reactor models can be 

used, e.g., operating a JSR under highly diluted conditions, under near-isothermal conditions).  
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Indeed, such kinetic reaction mechanisms need to be validated through extensive comparison of 

modeling predictions and experimental results obtained under well-defined conditions. A wide range of 

experimental facilities can provide such data which are usually described as ‘global’ and ‘detailed’. By 

combining data obtained from several techniques and conditions, one can check their consistency and 

use them to constrain chemical kinetic reaction mechanisms.  

 

Global data include ignition delay times which can be obtained using shock-tubes, rapid compression 

machines, or plug-flow reactors, and laminar burning velocities or flame speeds determined using 

several types of experiments such as spherical flames in combustion vessels, Bunsen burners, 

stagnation-flow flames, counter-flow flames, or heat-flux burners. Ignition experiments are particularly 

useful for probing initiation and termination reactions and reactions of molecular oxygen with radicals 

whereas they are usually less useful for probing the kinetics of propagation reactions involving atoms 

and radicals.  

  



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  58 

Initiations reactions:  

RH (+M) ⇌ R + H (+M), RH (+M) ⇌ R’ + R” (+M), and RH + O2 ⇌ R + HO2 

 

Propagation reactions:  

RH + X ⇌ R + HX (X= H, O, OH, HO2, CH3, HCO, …) and radicals reactions, e.g., 

R + O2 ⇌ R –H + HO2, R ⇌ olefin + R’, R ⇌ olefin + H 

 

Termination reactions:  

R + H (+M) ⇌ RH (+M) and R’ + R” (+M) ⇌ RH (+M). 
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The paramount importance of H-atoms has been recognized long ago (Tanford, C., J. Chem. Phys., 1947. 15(7): p. 433-

439.). Burning velocity experiments are very valuable for probing reactions involving H-atoms such as 

RH (+M) ⇌ R + H (+M) and R (+M) ⇌ product + H (+M). Burning velocities are also very sensitive to 

the main branching reaction in combustion, i.e., H+O2 ⇌ OH + O 

 

Sensitivity of computed laminar burning velocity of a methane-air flame at 1 bar and Tu = 298 K to 
reaction kinetics. From Warnatz, J., The structure of laminar alkane-, alkene-, and acetylene flames. 
Symposium (International) on Combustion, 18(1), p. 380, 1981. 
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Detailed data are mostly concentration profiles of stable and unstable chemical species observed 

during the oxidation and combustion of fuels. Many reactors in conjunction with sampling methods 

and analytical techniques have been used to acquire such data.  

 

Analytical techniques are often used after gas sampling performed using a range of probes (e.g., 

low-pressure, cooled, molecular beam) or traps (cold trap, bubblers, traps containing absorbents). 

These probes should stop chemical reactions and transfer a chemical sample to appropriate 

analyzers without changing its composition. This assumption needs to be verified.  

Low-pressure probes reduce reactions rates by lowering molecular concentrations and temperature 

after gas expansion.  

Cooled probes reduce reaction rates which are exponentially temperature-dependent, according to 

the Arrhenius equation.  

Probes are responsible for disturbance of the reaction medium (flow, temperature) which can result in 

additional complications for interpreting the experimental results.   
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Many cool traps can be used to collect the condensable compounds at the temperature of the trap 

(water ice: 273 K; CO2 dry ice: 194.65 K; liquid nitrogen: 77.2 K). The use of liquid nitrogen traps 

oxygen (O2 boiling temperature = 90.2 K) and requires particular care to prevent hazards.  

 

Nowadays, the most popular experimental techniques used are flow reactors (jet-stirred reactors, 

tubular flow reactors), burner stabilized laminar flames (premixed low-pressure flames, opposed flow 

diffusion flames), and shock-tubes. These techniques by themselves are useful because they cover a 

wide range of conditions (temperature, pressure, equivalence ratio, initial concentrations, residence 

time, recirculation rate) allowing to probe the complexity of combustion chemical kinetics. But this is 

through their coupling to a large range of analytical techniques that one can acquire the data needed 

to validate detailed kinetic combustion models.  
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Among these analytical techniques, some are very popular whereas others are less frequently used:  

Gas chromatography (with thermal conductivity detector, flame ionization detector, mass 

spectrometry), molecular-beam mass spectrometry, Fourier transform infrared spectrometry are 

commonly used. They are commercially available, reliable, and easy to use.  

 

Other spectroscopy techniques are also used in laboratory experiments. They are mostly used to 

measure radicals, atoms, and unstable molecular species in the UV or the infrared. Recent coupling of 

synchrotron-sourced photoionization with mass spectrometry allowed very detailed probing of 

oxidation and combustion processes. Several mass spectrometry techniques are used in laboratory 

experiments. They mostly differ by the use of different types of mass separation (time-of-flight, 

quadrupole, ion trap, Orbitrap®), and ionization mode (electronic, chemical, photonic).  

By combining the above-mentioned laboratory experiments, one can cover a very broad range of 

conditions relevant to practical applications such as internal combustion engines and gas turbines. 
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By combining shock-tubes and RCM experiments, one can probe fuels ignition under internal 

combustion engine conditions. The measurements of burning velocities and flame structures are 

limited to about 10 bar. Whereas individual reactor experiments have limited operating ranges, by 

combining them, one can provide detailed data over almost the entire range of pressure and 

temperature pertinent to I.C.engines and GT.  
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2. Shock-tubes and rapid compression machines 

Shock-tubes and RCM are batch reactors which can provide both global and detailed combustion 

data, i.e, ignition delay times and speciation.  

 

These techniques have been used for several decades. In 1890, Vieille started using compression 

driven shock tubes (Vieille, P., Comptes Rendus de l'Académie des Sciences, 1890. 111 p. 639-641)  

In 1906, Falk used a RCM to determine ignition temperatures (Falk, K.G., J. Am. Chem. Soc., 1906. 28 p. 1517).  

 

Major improvements have been made over the years, allowing the acquisition of very useful global 
and detailed data for kinetic modelers (Hanson, R.K. and D.F. Davidson, PECS, 2014. 44: p. 103-114; Sung, C.J. and H.J. Curran, 

PECS, 2014. 44: p. 1-18; Goldsborough, S.S. et al., PECS, 2017. 63: p. 1-78). 
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2.1 Ignition data from RCM and ST.  

RCM are limited to the investigation of relatively long ignition delays (5–100’s ms) at moderate-T, c.a. 

1000 K, and to P < 100 bar, shock-tubes can operate over a wider range of P (up to 100’s bar) and to 

very high-T (1000’s K) where ignition delays are rather short (ca. 1–100’s ms).  
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Shock-tube 

 
(a) Pressure trace, (b) temperature trace, (c) spectroscopic trace 

A shock tube is a several meters long tube with a driver (high-P) and a driven (low-P) section, 
separated by a diaphragm. The reacting mixture is introduced in the driven section. The driver 
section is filled with inert gas (He…). After diaphragm breaking, a shock wave forms and 
propagates downwards the tube at supersonic speed, heating and compressing the reacting 
mix gas within < 1 μs (incident SW). The SW reflects at the end wall and the preheated 
reacting mix is heated and compressed again (reflected SW).  
 
https://www.friedrichs.phc.uni-kiel.de/en/research/shock-tube-frequency-modulation-spectroscopystossrohr
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Ignition traces in ST 

 
Ciezki and Adomeit, Comb. Flame 93 (1993) 421-433. 
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Experimental (symbols) and modeled (lines) ignition delay times for a φ = 0.5 NG/air mix  measured 
using a RCM (open symbols) and a shock-tube (closed symbols) at 8–10 atm (black) and 19–20 atm 
(red). From Sung, C.J. and H.J. Curran, Using rapid compression machines for chemical kinetics 
studies. Progress in Energy and Combustion Science, 44: p. 10, 2014. 
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Modelers must be aware of a complication when trying to combine ignition data obtained in a shock-

tube and a RCM. At first, they can look irreconcilable. In fact, it is necessary to consider facility-

dependent effects before combining ignition delay times measured in shock-tubes and RCMs.  

 

These have been described with great details in several publications and have been reviewed recently 

(Sung, C.J. and H.J. Curran, PECS, 2014. 44: p. 1-18).  

 

Up to now, a large set of data is available for the ignition of fuels ranging from hydrogen to practical 

fuels such as jet fuels or biodiesel (Dagaut, P., et al., CNF, 2014. 161(3): p. 835-847; Ramirez-Lancheros, H.P., et al., CNF, 2012. 

159(3): p. 996-1008). These data have been extensively used to propose detailed and simple kinetic models.  
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2.2 Species measurements from ST and RCM. 

Whereas speciation in shock-tubes has received much attention (studies concern both oxidation and 

pyrolysis), a more limited database is available from RCM experiments.  

 

Several research groups have used shock tubes to measure species concentrations using 

spectroscopy (Hanson, R.K., PROCI, 2011. 33(1): p. 1-40; Roth, P., Forsch. Ing.-Eng. Res., 1980. 46(3): p. 93-102) and gas-

chromatography (Tranter, R.S. et al., Rev. Sci. Instr., 2001. 72(7): p. 3046-3054; Tranter, R.S. et al., PCCP, 2002. 4(11): p. 2001-2010). 

Hanson and co-workers have recently reported laser-absorption-based measurements in shock-tubes 

of time-histories of reactants, small-radicals, stable intermediates, and combustion products: 
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Time-history for stable and labile species measured during the oxidation of n-heptane in a shock-tube 
(continuous lines) are compared to kinetic modeling (dashed lines). From: Hanson, R.K., Applications 
of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proceedings of the 
Combustion Institute, 33(1), p. 10, 2011. 
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Such data are particularly useful for improving kinetic reactions schemes. This is also true for data 

coming from single-pulse shock-tube experiments with gas-sampling and GC analyses (Sivaramakrishnan, 

R. et al., PROCI, 2005. 30(1): p. 1165-1173): 

 

Toluene oxidation at φ = 1 and 610 bar in a shock-tube. (●) Experimental data C6H5CH3; (▲) Expt. 
CO; (□) KBG model C6H5CH3; (◇) KBG model CO; (○) STB model C6H5CH3; (△) STB model CO; (⋯) 
fit to KBG model predictions; and (—) fit to STB model predictions. From Sivaramakrishnan, R., R.S. 
Tranter, and K. Brezinsky, A high pressure model for the oxidation of toluene. Proceedings of the 
Combustion Institute, 30(1), p. 1169, 2005 
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More recent developments: 

A miniature with high-repetition rate shock-tube was recently introduced by Tranter (Tranter, R.S. and P.T. 

Lynch, Rev. Sci. Instr., 2013. 84(9): p. 094102) who used it to probe pyrolysis chemistry of dimethyl ether at high 

temperature (1400 –1700 K) and high pressure (3 –16 bar) with a tunable synchrotron-generated 

photoionization time-of-flight mass spectrometer (Lynch, P.T. et al., Analytical Chemistry, 2015. 87(4): p. 2345-2352). This 

new set-up opens up new horizons for chemical kinetics. 

 

Data obtained with shock-tubes have been extensively used to propose detailed and simple kinetic 

models for the oxidation of fuels ranging from hydrogen to large hydrocarbons and practical fuels 

(gasoline and jet fuel, Zhu, Y. et al., in 53rd AIAA Aerospace Sciences Meeting. 2015; Li, Y., Ph.D., School of Chemistry. 2017, Nat. Univ. of 

Ireland: Galway; Javed, T. et al.,CNF, 2017. 185(Sup. C): p. 152-159).  
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Species measurements in RCM through gas-sampling started in the 1960’s (Roblee, L.H.S., CNF, 1961. 

5(Sup. C): p. 229-234; Martinengo, A. et al., Symp. (Int.l) Combust., 1965. 10(1): p. 323-330; Fish, A. et al., Proc. Royal Soc. London. A. Math. Phys. 

Sci., 1969. 313(1513): p. 261). Several groups have performed such experiments for the ignition of 

hydrocarbons, alkyl nitrates, and oxygenated fuels. GC has been used in most of RCM experiments; 

exhaust gas analyzers for CO, CO2, NOx, and unburned hydrocarbons have also been used (Ribaucour, 

M. et al. J. Chim. Phys. Phys.-Chim. Biol., 1992. 89(11-12): p. 2127-2152; Minetti, R. et al., CNF, 1994. 96(3): p. 201-211; Minetti, R. et al., CNF, 1995. 

102(3): p. 298-309; Van Blarigan, P. et al., SAE Tech Pap 982484, 1998).  

Spectroscopic methods in the UV and IR have also been used after Fish et al. (Fish, A. et al., Proc. Royal Soc. 

London. A. Math. Phys. Sci., 1969. 313(1513): p. 261). These data have been used to propose detailed and simple 

kinetic models for the oxidation of fuels (from H2 to oxygenates and large HC (Sung, C.J. and H.J. Curran, PECS, 

2014. 44: p. 1-18), but also served to identify the products of low-temperature oxidation of a range of fuels 

(Minetti, R et al.., CNF, 1994. 96(3): p. 201-211; Minetti, R. et al., CNF, 1995. 102(3): p. 298-309; Walton, S.M. et al., Fuel, 2011. 90(5): p. 1796-1804; 

Karwat, D.M.A. et al., J. Phys.l Chem. A, 2011. 115(19): p. 4909-4921).  
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Advantages:  

Can be run with very little fuel compared to flames and reactors experiments.  

A wide range of operating conditions, in terms of P, T, and φ, is covered by combining these 

techniques.  

 

Limitations/weaknesses:  

Batch reactor experiments are time consuming because they involve mixture preparation, pumping 

after each ignition experiment, replacement of the shock-tube diaphragm (needing disassembling / 

reassembling).  

Also, pressure history must be well characterized to allow accurate kinetic modeling. 
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3. Flow reactors: Tubular Flow Reactors and Stirred Reactors  

Flow reactors are particularly useful for measuring the concentration of reactants, intermediates 

species, and final products of fuels oxidation or pyrolysis or interaction of fuels with other species, 

e.g., NOx, SOx, CO2, H2O.  

They usually operate at temperatures below 1500 K and pressure less than 50 bar.  

They are particularly useful for studying the low-T oxidation chemistry of fuels. In most of the 

experiments, high fuel dilution (100–1000’s ppm) is used to avoid flame occurrence and large 

temperature gradients. Nevertheless, experiments are also performed with higher initial fuel 

concentrations (1–few mole %).  

  



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  77 

Whereas in tubular flow reactors, ideally called plug-flow reactors (PFRs), one can observe 

chemical reactions along the reactor axis; in jet-stirred reactors the chemical composition is ideally 

homogeneous. Flow reactors are usually heated by external ovens. Temperature measurements are 

of great importance for running accurate modeling. In tubular reactors, this means that measurements 

must be made along the reactors axis.  

 

In JSR, temperature homogeneity is usually verified along the reactor main axis and measurements 

used as input in isothermal perfectly stirred reactor model. Compared to flame experiments, flow 

reactors are not limited to flammability limits. As shock-tubes, they allow studying fuel-lean oxidation 

to pyrolysis. Although this is not very common, tubular-flow reactors operating under plug-flow 

conditions can be used to determine ignition delays. 
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3.1 Species measurements. 

Two types of flow reactors are mainly used in recent kinetic studies. Tubular flow reactors consist of 

a tube where reactants are injected and heated from the outside. The flow inside the tube can be 

laminar (Rasmussen, C.L. et al., IJCK, 2008, 40(8): p. 454-480; Zhang, T.C. et al., J.Phys .Chem. A, 2008. 112(42): p. 10487-10494) or turbulent 

(Allen, M.T. et al., I.J.C.K., 1995. 27(9): p. 883-909; Kim, T.J. et al., Symp. (Int.) Combust., 1994. 25(1): p. 759-766; Zhewen, L. et al, Meas. Sci. 

Technol., 2017. 28(10): p. 105902): 

 

Schematic of the Melbourne University high-pressure tubular flow reactor that operates up to 50 bar. From 
Zhewen, L., C. Julien, L. Nicolas, Y. Yi, and J.B. Michael, Measurement Science and Technology, 28(10), 105902, 
p. 3, 2017. 



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  79 

 

 

Schematic of the Princeton variable pressure tubular flow reactor that operates up to 20 atm and ca. 
1200 K. From Kim, T.J., R.A. Yetter, and F.L. Dryer, Symposium (International) on Combustion, 25(1), 
p. 760, 1994. 
 

Whereas most of the currently used PRFs use conventional analytical instruments (e.g., GC, GC-MS, 

FTIR) to probe the chemistry, molecular-beam mass spectrometry and tunable synchrotron VUV 

photoionization have been introduced recently (Zhang, T.C. et al., J. Phys. Chem. A, 2008. 112(42): p. 10487-10494), opening 

new horizons for the understanding and validation of chemical kinetic reaction mechanisms. 
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Several jet-stirred reactor (JSR) geometries have been used (spherical, hemispherical, toroidal, 

near-conical), but the most popular design is a spherical reactor of less than 50 cm3. This technique 

potentially allows operation over a wide range of residence time (from few milliseconds to several 

seconds), depending on the reactor geometry (David, R. and D. Matras, Can. J. Chem. Eng., 1975. 53(3): p. 297-300). 

Temperature homogeneity is improved through preheating to a temperature close to the reactor 

operating temperature (Dagaut, P. et al., J. Phys. E-Sci. Instr., 1986. 19(3): p. 207-209; Rota, R. et al., Chem Eng Sci, 1994. 49(24A): p. 4211-4221). 

Composition homogeneity was shown to be easier to achieve.  

 
Picture of a fused-silica JSR used at CNRS Orléans. Stirring is provided by 4 injectors. With this reactor, one can 
operate from 40 ms to 3s. 
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JSR set-up 
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Schematic of the MIT alumina toroidal jet-stirred reactor. Stirring is provided by 32 injectors. From 
Nenniger, J.E., A. Kridiotis, J. Chomiak, J.P. Longwell, and A.F. Sarofim, Characterization of a toroidal 
well stirred reactor. Symposium (International) on Combustion, 20(1), p. 474, 1985. 
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Schematic of the ceramic jet-stirred reactor developed at the University of Washington, Seattle. 
Stirring is provided by a single injector. From Westbrook, C.K., W.J. Pitz, M.M. Thornton, and P.C. 
Malte, Combustion and Flame, 72(1), p. 47, 1988. 
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These reactors have been used to provide useful data for modeling the pyrolysis and oxidation of a 

wide range of fuels: 

hydrogen, ammonia, carbon monoxide, syngas, hydrocarbons, oxygenates, and complex fuels such 

as gasoline, jet-fuels, Diesel-fuels, synthetic fuels, and biodiesel.  

 

An example of such results is given next for the oxidation of a conventional jet A-1and 2 synthetic 

jet-fuels (Dagaut, P. et al., CNF, 2014. 161(3): p. 835-847).  
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(a) (b) 
Comparison of experimental data obtained from the JSR oxidation of (a) Jet A-1 (closed symbols) and 
GtL (open symbols) and (b) CtL (closed symbols) and GtL jet fuel (open symbols) at φ = 1.0, 10 bar, 
and a mean residence time of 1 s. From Dagaut, P., CNF, 2014, 161(3), p. 840. 
 

These data show differences in terms of reactivity and formation of intermediate products that can be 

explained through detailed kinetic modeling (Dagaut, P. et al., CNF, 2014. 161(3): p. 835-847; CST, 2014. 186(10-11): p. 1275-

1283; GT2015-42004 in ASME Turbo Expo 2015; CST 2016. 188(11-12): p. 1705-1718; PROCI, 2017. 36(1): p. 433-440).  
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Whereas gas chromatography and FTIR spectrometry are usually used in conjunction with small sonic 

probes in JSRs experiments to probe the chemistry (Herbinet, O. and G. Dayma, in Cleaner Combustion: Developing Detailed 

Chemical Kinetic Models, 2013, Springer-Verlag, London), molecular-beam mass spectrometry and tunable synchrotron 

VUV photoionization have been introduced recently, allowing deeper investigations of combustion 

chemistry (Battin-Leclerc, F. et al., PROCI, 2011. 33(1): p. 325-331; Moshammer, K. et al., J. Phys. Chem. A, 2015. 119(28): p. 7361-7374; Wang, 

Z. et al., PNAS, 2017. 114(50): p. 13102-13107).  

 

Recent results have been obtained through the combination of JSRs and high resolution mass 

spectrometry (Photoionization-MBMS and APCI-Orbitrap MS). They demonstrate that currently 

accepted reaction schemes for hydrocarbons oxidation are missing reaction pathways leading to the 

formation of highly oxygenated molecules.  

 

The inclusion of such reactions and products in kinetic scheme could influence significantly model 

predictions (Wang, Z. et al., PNAS, 2017. 114(50): p. 13102-13107).  
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Mass spectra of intermediates with the molecular formula of C7H10Ox (x=0 –4). (a) and (b) are for JSR-
1 PI-MBMS measurements at T= 530 K and 600 K, respectively. Photon energy is 9.6 eV. (c) is for 
JSR-2 APCI-OTMS measurements at 535 K. (d) is for CFR engine APCI-OTMS measurements. From 
Wang, Z.D. et al., Combustion and Flame, 187, Supporting information, p.S5, 2018. 
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Dagaut et al., Mediteranean Combustion Symposium, 2019  
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Dagaut et al., Mediteranean Combustion Symposium, 2019  
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Quantitative measurements using cavity ring-down spectroscopy (CRDS) in the near-IR of HO2 and 

H2O2 were reported recently (Djehiche, M. et al., JACS, 2014. 136(47): p. 16689-16694; Le Tan, N.L. et al., Fuel, 2015. 158: p. 248-252). 

The gas mixtures were sampled with a wide angle fused silica nozzle, the tip being located 5 mm 

inside the reactor. The CRDS cell was kept at low-P (0.3 to 10 mbar), while operating the JSR at 1 

atm.  

 

HO2 concentration profile measured by CRDS during the oxidation of 5000ppm of dimethyl ether in a 
JSR at an equivalence ratio of 0.5 and a mean residence time of 1.5s. The data (symbols) are 
compared to simulations using three literature mechanisms. From Le Tan, N.L., M. Djehiche, C.D. 
Jain, P. Dagaut, and G. Dayma,. Fuel, 158, p. 250, 2015. 
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JSR and PFR have been combined at MIT(Lam, F.W. et al., Symp. (Int.) Combust., 1989. 22(1): p. 323-332) to allow 

probing combustion chemistry over a wider range of residence times. The original design was further 

modified at NIST by Lenhert and Manzello  

 

Schematic of the NIST jet-stirred reactor/plug-flow reactor assembly inspired from an earlier MIT 
design(Lam, F.W. et al., Symp. (Int.) Combust., 1989. 22(1): p. 323-332). From Lenhert, D.B. and S.L. Manzello, Proc. 
Combust. Inst., 32(1), p. 658, 2009.  
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Both PFRs and JSRs can be pressurized (Rasmussen, C.L. et al., IJCK, 2008. 40(8): p. 454-480; Allen, M.T. et al., IJCK, 1995. 

27(9): p. 883-909; Dagaut, P. et al., J. Phys. E-Sci. Instr., 1986. 19(3): p. 207-209). Whereas fused-silica reactors are commonly 

used, some were built in metal (Lignola, P.G. and E. Reverchon, CST, 1988. 60(4-6): p. 319-333; Ciajolo, A. et al., CST, 1997. 123(n): p. 

49-61; Harper, M.R. et al., CNF, 2011. 158(1): p. 16-41; Wada, T. et al.,. CTM, 2013. 17(5): p. 906-936) and refractory materials (e.g., 

ceramic or alumina) (Westbrook, C.K. et al., CNF, 1988. 72(1): p. 45-62; Bilbao, R. et al., Proc.. Ind. & Eng. Chem. Res., 1994. 33(11): p. 

2846-2852). Whereas fused-silica is generally considered chemically inert in combustion studies, other 

materials such as metals have catalytic activity that cannot be ignored. 

 

Schematic of the Ghent University Incoloy 800HT tubular flow reactor. From Harper, M.R., K.M. Van Geem, S.P. 
Pyl, G.B. Marin, and W.H. Green, Comprehensive reaction mechanism for n-butanol pyrolysis and combustion. 
Combustion and Flame, 158(1), p. 18, 2011. 
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Flow reactors advantages: 

Operating temperature range and the possibility to investigate pyrolysis to oxidation, whereas flame 

studies are much more limited.  

Reactors are particularly useful for gaining insights into reaction products and intermediates through 

the use of advanced detection and/or quantification techniques.  

Numerous analytical techniques are used after gas sampling achieved using a range of probes for 

stopping chemical reactions and transferring a chemical sample to the appropriate analyzers. Also, 

one should be aware of possible complications such as surface reactions.  

Flow reactors disadvantages: 

Can operate over limited temperature, pressure, and residence time ranges. This is due to material 

range of use and reachable flow rates.  

Experiments need much larger fuel quantities compared to shock-tube and RCM experiments. The 

quantification of intermediate species by photoionization remains limited due to unknown 

photoionization efficiency difficult to compute using current theoretical methods.
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3.2 Ignition data from PFR 

Ignition delays can also be determined using PFRs. Recently an experimental setup was designed for 

this purpose (Wada, T. et al.,. CTM, 2013. 17(5): p. 906-936). The 1st-stage ignition is observed as a temperature 

increase of a few degrees in the reactor. After the first-ignition, strong heat loss to the reactor wall 

reduces the temperature and stops chemical reactions. The 1st-stage ignition is determined based on 

the distance between fuel injection and the location of the first T-rise and the flow rate in the reactor. 

 

Schematic of the Aachen University stainless steel laminar tubular flow reactor. From Cai, L.M., A. Sudholt, D.J. 
Lee, F.N. Egolfopoulos, H. Pitsch, C.K. Westbrook, and S.M. Sarathy, Combustion and Flame, 161(3), p. 802, 
2014. 
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This set-up was successfully used for measuring first-stage ignition delays of biofuels: 

 

 

Ignition delay times of dibutyl ether/air mixtures at 1 atm. From Cai, L.M., A. Sudholt, D.J. Lee, F.N. 
Egolfopoulos, H. Pitsch, C.K. Westbrook, and S.M. Sarathy. Combustion and Flame, 161(3), p. 802, 
2014. 
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4. Flames 

Laminar flames are used to obtain both global (laminar burning velocity) and detailed (spatial 

speciation or flame structure) data usable for validating kinetic models.  

 

Flame experiments are currently performed over a wide range of pressure, from ca.0.04 to 60 bar.  

 

Burning velocities have been obtained from ca. 0.1 to 60 bar whereas flame structures are available 

up to ca. 10 bar.  

 

Major improvements of the methods have been made over the years, allowing the acquisition of very 

valuable data for kinetic modelers over a very wide range of conditions and for many fuels (Ranzi, E. et al., 

PECS, 2012. 38(4): p. 468-501; Egolfopoulos, F.N. et al., PECS, 2014. 43: p. 36-67). 
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4.1 Burning velocities 

 

The laminar flame speed is defined as the propagation speed of a steady, laminar, one-dimensional, 

planar, stretch-free, and adiabatic flame.  

It is an important fundamental property of a flammable mixture, being a measure of its reactivity, 

diffusivity, and exothermicity.  

It constitutes an important validation target for kinetic models and a key parameter in turbulent 

combustion.  
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Burning velocity can be extracted from a range of experimental configurations, e.g., soap bubble 

method, flames in tubes, flat flame burner method, conical flames (Bunsen type), heat flux method, 

spherical flames in constant volume chamber, and stagnation flame/opposed-flow method:  

 

Determination of the burning velocity Su by applying the cone angle method (Su=Vu sin α). 
From Mzé Ahmed, A., P. Dagaut, K. Hadj-Ali, G. Dayma, T. Kick, J. Herbst, T. Kathrotia, M. Braun-
Unkhoff, J. Herzler, C. Naumann, and U. Riedel, The Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: 
Experimental and Chemical Kinetic Modeling Study. Energy & Fuels, 26(10), p. 6072, 2012. 
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Spherical flames in constant volume chamber: 

 

 

Shadowgraphs of the temporal evolution of an ethyl propanoate/air flame front at P = 1 bar, Tu = 423 
K and φ= 0.9. The temporal increase of the flame radius is used to compute the stretched laminar 
burning velocity. The unstretched burning velocity is obtained after extrapolation to zero-stretch using 
proposed methods in the literature.  
 
 
From Dayma, G., F. Halter, F. Foucher, C. Mounaim-Rousselle, and P. Dagaut, Laminar Burning Velocities of C(4)-C(7) Ethyl 
Esters in a Spherical Combustion Chamber: Experimental and Detailed Kinetic Modeling. Energy & Fuels, 26(11), p. 6670, 2012. 
 

  

0 ms 3.3 ms 5 ms 6.7 ms 8.3 ms 10 ms 

      



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  100 

Nowadays spherical flames in constant volume chamber and stagnation flame/opposed-flow method 

are the most widely used.  

They have been reviewed recently (Ranzi et al. PECS, 2012. 38(4): p. 468-501 and Egolfopoulos et al. PECS, 2014. 43: p. 36-67). 

High pressure and temperature conditions are hardly reachable using Bunsen flames, counter-flow 

flames or heat flux burner. Most of the results reported at elevated pressures were obtained with 

spherical expanding flames. One limitation of this method comes from the fact that the spherical flame 

surface is changing during propagation inducing stretch effects which must be accounted for using 

extrapolation methods.  

 

Until the work of Wu and Law (Symp. (Int.) Combust., 1985. 20(1): p. 1941-1949), undetermined stretch effects led to 

lots of scatter in measurements.  

Significant reduction of uncertainty on flame speed measurements has resulted from stretch 

correction, as outlined by Law (AIAA Journal, 2012. 50(1): p. 19-36) for methane-air flames for which the ±25 

cm/s scatter got reduced to ca. 2 cm/s recently by considering the non-linear nature of stretch on 

burning velocity (Kelley, A.P. and C.K. Law, CNF, 2009. 156(9): p. 1844-1851; Halter, F. et al., CNF, 2010. 157(10): p. 1825-1832). With 

such low uncertainties, burning velocities are very valuable for kinetic models assessment. 
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Picture of twin stagnation flames (left) and schematic view (right).  
 
From Egolfopoulos, F.N., N. Hansen, Y. Ju, K. Kohse-Hoinghaus, C.K. Law, and F. Qi, Advances and challenges in laminar flame 
experiments and implications for combustion chemistry. Progress in Energy and Combustion Science, 43, p. 49, 2014. 
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Burning velocities for simple to complex fuels have been published. An example of such results is 

given here for the combustion of synthetic jet-fuels. 

 

Comparison of measured (symbols) and predicted laminar burning velocities of synthetic and 
conventional jet-fuel-air mixtures at Tu = 473 K and p = 1bar. 
 
From Dagaut, P., F. Karsenty, G. Dayma, P. Diévart, K. Hadj-Ali, A. Mzé-Ahmed, M. Braun-Unkhoff, J. Herzler, T. Kathrotia, T. 
Kick, C. Naumann, U. Riedel, and L. Thomas, Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet 
fuel. Combustion and Flame, 161(3), p. 846, 2014. 
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4.2 Species measurements.  

The measurement of flames structure has a long history (Eltenton, G.C., J. Chem. Phys., 1947. 15(7): p. 455-481; Fristrom, 

R.M. and A.A. Westenberg, Flame Structure. 1st Ed. 1965: McGraw-Hill. 424). Nowadays, flame structures mostly come from 

two methods: low-pressure premixed flat flames and stagnation flames.  

These techniques have been reviewed recently (Egolfopoulos, F.N. et al., PECS, 2014. 43: p. 36-67).  

Samples are extracted from the flame using a probe and sent to analyzers (gas chromatography, 

mass spectrometry).  

Molecular beam-mass spectrometry has been used extensively.  

 

More recently, photoionization by synchrotron-sourced vacuum-ultraviolet radiation was employed, 

generating a large body of kinetic data unreachable by other techniques (Egolfopoulos, F.N. et al., PECS, 2014. 43: 

p. 36-67; Qi, F. et al., Rev. Sci. Instr., 2006. 77(8): p. 84101; Qi, F., PROCI, 2013. 34(1): p. 33-63; Hansen, N. et al., PECS, 2009. 35(2): p. 168-191; 

Cool, T.A. et al., J. Chem. Phys., 2003. 119(16): p. 8356-8365; Rev. Sci. Instr., 2005. 76(9); Westmoreland, P.R. et al., Comb. Expl. Shock Waves, 2006. 

42(6): p. 672-677): 
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Schematic of a low-pressure McKenna burner experimental set-up. Gases from the flame are 
sampled through a fused-silica probe (picture) into a time-of-flight mass spectrometer where 
chemicals are photo-ionized by synchrotron-generated vacuum-ultraviolet radiation.  
 
From Taatjes, C.A. et al. Physical Chemistry Chemical Physics, 10(1), p. 22, 2008. 
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Fused-silica probe can cause significant perturbations to the flame, making difficult to model and 

interpret the experiments, as demonstrated in a recent study by Hansen et al. (CNF, 2017. 181: p. 214-224, PCI 

2019, 37, p.1401 ).  

 
Temperature along the centerline for 3 different sampling positions near 4, 7, and 22 mm for 2 

different cone designs. https://doi.org/10.1016/j.proci.2018.05.034  
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Also, the use of a thermocouple for measuring temperature profiles in the flame can alter the flow 

fields and temperature profiles (Skovorodko, P.A. et al., CTM, 2013. 17(1): p. 1-24; CNF, 2012. 159(3): p. 1009-1015), although 

these effects are small compared to sampling probe perturbations.  

 

Nevertheless, a wide range of fuels have been studied in flames. 

Examples of concentration profiles of C2–C14 species measured in low-pressure premixed flames of 

toluene next.  
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Experimental (symbols) and simulated (lines) mole fraction profiles of acetylene (C2H2), propargyl 
(C3H3), vinylacetylene (C4H4), cyclopentadienyl (C5H5), benzene (A1), benzyl (A1CH2), phenyl-
acetylene (A1C2H), ethylbenzene (A1C2H5), indenyl (C9H7), indene (C9H8), naphthalene (A2) and 
phenanthrene (A3) in the premixed flames of toluene at five equivalence ratios (0.75 to 1.75). The 
data were obtained by MB-MS with photoionization by synchrotron-sourced vacuum-UV 
radiation. From Yuan, W.et al.,CNF 162(1), p. 36, 2015. 
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Temperature profiles in the present ethylene/O2/Ar flame. 
Open diamonds and open circles represent the Tpert and Tunpert 
profiles, respectively. Shadows represent the scaled Tpert 
profiles considering the uncertainties of maximum Tpert values. 

Measured (symbol) and predicted (lines) mole fraction profiles 
of C2H5OOH in the present ethylene/O2/Ar flame. The solid 
and dashed lines represent the predicted results with the Tpert 
and Tunpert profiles, respectively. Shadows represent the 
predicted results considering the uncertainties of Tpert. 
 
 
 
 
 
 
 
 
 
 
 
 
ROP analysis with the Hashemi model* by using the Tpert profile 
at (a) d = 0 mm (T = 555 K) and (b) d = 0.98 mm (T = 755 K). 
 
*H. Hashemi, J.G. Jacobsen, C.T. Rasmussen, J.M. Christensen, P. 
Glarborg, S. Gersen, M. van Essen, H.B. Levinsky, S.J. Klippenstein, 
High-pressure oxidation of ethane, Combust. Flame 182 (2017) 150-166. 

From Xiaoyuan Zhang et al. Comb. Flame 204 (2019) 260–267 
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Whereas time-of-flight mass spectrometry with photoionization by synchrotron-generated vacuum-

ultraviolet radiation are very useful for detecting intermediate species, the differentiation between 

isomers can be difficult when photoionization energies are too close.  

 

Dias et al. (CST, 2004. 176(9): p. 1419-1435) have introduced a useful method consisting of a conventional EI-

MBMS setup where a portion of the sample is sent to a GC-MS through a capillary, allowing 

separation of isomers of stable products that could not be differentiated based on their ionization 

energies or mass.  

 

Other workers also combined EI-MBMS measurements with GC-MS measurements to get better 

characterization of isomers (Bourgeois, N. et al., PROCI, 2017. 36(1): p. 383-391). 
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5. Some conclusions and perspectives 

The most common experiments for kinetic mechanism assessment have been presented. It was 

shown that shock-tube and RCM are very useful for determining fuel ignition properties but also to 

measure chemical products. Recent advances in CFD modeling of RCM (Bourgeois, N. et al., PROCI, 2017. 36(1): 

p. 383-391; CNF, 2018. 189: p. 225-239) are expected to facilitate the use of RCM ignition data for kinetic model 

validation. Tubular flow reactors and jet-stirred reactors are commonly used. Their coupling with 

advanced analytical techniques is able to provide unique data for kinetic models assessment. 

However, current limitations due to unknown photoionization efficiency for many intermediates must 

be addressed, possibly through the use of advanced theoretical methods. Flames can also provide 

valuable data in terms of burning velocities and speciation, although, limiting perturbations by 

conventional large sampling probes remains a major challenge for future work. 

Nomenclature: APCI-OTMS: Atmospheric pressure chemical ionization-Orbitrap® mass spectrometry; CFD: Computational fluid dynamics; CFR: 
Cooperative Fuel Research; CRDS: Cavity ring-down spectroscopy; CtL: Coal-to-liquid; EI-MBMS: Electron ionization molecular beam-mass 
spectrometry; FTIR: Fourier-transform infrared; GC: Gas chromatography; GC-MS: Gas chromatography-mass spectrometry; GtL: Gas-to-liquid; IR: 
Infrared; JSR: Jet-stirred reactor; PFR: Plug-flow reactor; PI-MBMS: Photoionization molecular beam-mass spectrometry; PSR: Perfectly-stirred reactor; 
RCM: Rapid compression machine; ST: Shock-tube; Tu: temperature of fresh gas; UV: Ultraviolet; VUV: Vacuum ultraviolet; φ: equivalence ratio. 
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Summary 
 

 
Shock-tubes and rapid compression machines. Shock-tube and RCM are very useful for determining 
fuel ignition properties but also to measure chemical products. 
 
Flow reactors: Tubular Flow Reactors and Stirred Reactors. Commonly used. Their coupling with 
classical (GC, MS, FTIR) and advanced analytical techniques is able to provide unique data for kinetic 
models’ assessment.  
 
Flames. They provide valuable data in terms of burning velocity and speciation. Beware of probe 
perturbations. 
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Part 3 
MODELING 
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Modeling: General information 
 

 

Need accurate kinetics, thermochemistry, and transport data 

 

Use inputs from theory and measurements and also estimations by analogy, tabulations 

 

Need accurate data that are used to constrain the model 
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Modeling 

 

Chemkin computer package. 

 

Kinetic reaction mechanism with modified Arrhenius equation, k= A Tb exp (-E/RT); k(P,T).  

 

Reaction mechanism with strong hierarchical structure.  

The core-mechanism is H2/O2 (H, O, OH, HO2, H2O2, O2, O3, H2). 
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Modeling: Hierarchical structure of chemical kinetic schemes 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
● ● ●

 

H2-O2 CO2 CH3OH

CH4CO CH2O

C2H6

C2H4

C2H2

C3 >C4

Structure hierarchisee des mecanismes detailles
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Modeling: Size of chemical kinetic schemes 

 
from T.F. Lu, C.K. Law, PECS 35 (2009) 192–215 
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Modeling: reaction scheme 
 

REACTIONS  k=A*T**n*exp(-E/RT)  
A/cc,mole,s   n    E/cal/mol   Ref 

 
H+      H+  M =   H2+       M   7.310E+17  -1.00         0.0  !(BAULCH 76) 
O+      O+  M =   O2+       M   1.140E+17  -1.00         0.0  !(BAULCH 76) 
O+      H+  M =   OH+       M   6.200E+16  -0.60         0.0  !(DIXON-LEWIS 81) 
H2+     O2    =   OH+      OH   1.700E+13   0.00 47780.0  !(MILLER 77) 
O+     H2     =   OH+       H    3.870E+04   2.70   6260.0  !GRI 
H+     O2     =   OH+       O   4.400E+14  -0.12 16812.0  !Nicolle 2004 
H+     O2+  M =  HO2+       M   8.000E+17  -0.80         0.0  !(WARNATZ 84) 
H+     OH+  M =  H2O+       M   8.615E+21  -2.00         0.0  !(BAULCH 76) 
H2+     OH    =  H2O+       H   2.161E+08   1.51   3430.0  !(MICHAEL 88) 
H2O+      O   =   OH+      OH   1.500E+10   1.14 17260.0  !(WARNATZ 84) 
HO2+     OH   =  H2O+      O2   2.890E+13   0.00    -497.0  !(KEYSER 88) 
HO2+      O   =   OH+      O2   1.810E+13   0.00    -400.0  !(JPL 87-41) 
H+    HO2     =   H2+      O2   4.280E+13   0.00   1411.0  !(94BAU/COB) 
H+    HO2     =   OH+      OH   1.690E+14   0.00     874.0  !(94BAU/COB) 
H+    HO2     =  H2O+       O   3.010E+13   0.00   1721.0  !(BAULCH 92) 
HO2+    HO2   = H2O2+      O2  4.075E+02   3.32   1979.0  !(HIPPLER  90) 
OH  + OH  (+M)= H2O2 (+M)   7.224E+13  -0.37         0.0  !(94BAU/COB)    
H2O2+     OH  =  HO2+     H2O 5.800E+14   0.00    9557.0  !(92HIP/TRO) 
H2O2+      H  =  HO2+      H2   1.700E+12   0.00    3750.0  !(BAULCH 72) 
H2O2+      H  =  H2O+      OH   1.000E+13   0.00    3590.0  !(WARNATZ 84) 
H2O2+      O  =  HO2+      OH   2.800E+13   0.00    6400.0  !(ALBERS 71) 
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Modeling: thermochemistry 

     ELEMENT   COMPOSITION  Phase LOWER-T HIGHER-T MID-T 
H                       H   10   00   00   0G   300.00   5000.00  1000.00      1 
 0.25000000E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00    2 
 0.25471600E+05-0.46000000E+00 0.25000000E+01 0.00000000E+00 0.00000000E+00    3 
 0.00000000E+00 0.00000000E+00 0.25471600E+05-0.46000000E+00                   4 
H2                      H   20   00   00   0G   300.00   5000.00  1000.00      1 
 0.29914200E+01 0.70006000E-03-0.56340000E-07-0.92300000E-11 0.15800000E-14    2 
-0.83500000E+03-0.13550000E+01 0.32981200E+01 0.82494000E-03-0.81430000E-06    3 
-0.94750000E-10 0.41349000E-12-0.10125000E+04-0.32940000E+01                   4 
O                       O   10   00   00   0G   300.00   5000.00  1000.00      1 
 0.25420600E+01-0.27550000E-04-0.31000000E-08 0.45500000E-11-0.44000000E-15    2 
 0.29230800E+05 0.49200000E+01 0.29464300E+01-0.16381700E-02 0.24210300E-05    3 
-0.16028400E-08 0.38907000E-12 0.29147600E+05 0.29640000E+01                   4 
O2                      O   20   00   00   0G   300.00   5000.00  1000.00      1 
 0.36975800E+01 0.61352000E-03-0.12588000E-06 0.17750000E-10-0.11400000E-14    2 
-0.12339000E+04 0.31890000E+01 0.32129400E+01 0.11274900E-02-0.57562000E-06    3 
 0.13138800E-08-0.87686000E-12-0.10052000E+04 0.60350000E+01                   4 
( kk aa ,7,1 ... ) to calculate thermodynamics over the range 1000 - 5000 K and ( kk aa ,14,8 ... ) over the range 300 - 1000 K. 
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Modeling: transport  
 
 
 
 
 
 

SPECIES  STRUCTURE   L-J POTENTIAL WELL L-J COLLISION DIAM. DIPOLE MOMENT POLARIZABILITY ROTATIONAL RELAX COLL NBR 

    ε/k    σ    μ   α   Z rot 
O      0      80.000       2.750       0.000      0.000      0.000 
O2     1     107.400       3.458       0.000      1.600      3.800 
OH     1      80.000       2.750       0.000      0.000      0.000 
H2O    2     572.400       2.605       1.844      0.000      4.000 
H2O2   2     107.400       3.458       0.000      0.000      3.800  

 

Structure: 0= atom; 1= linear; 2= non-linear 

 
Very good source for the transport properties and their estimates in R. C. Reid, R. C., J. M., Prausnitz, 
B. E., Poling The properties of Gases and liquids, 4th ed, McGraw-Hill, New York, 1987. 
 
CHEMKIN details : R. J. Kee, J. Warnatz, M. E. Coltrin, and J. A. Miller, A FORTRAN computer code 
package for the evaluation of gas-phase, multicomponent transport properties, Sandia Report 86-
8246. 
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Rate constants measurements 
 
Example: OH + dimethyl ether 
 
OH radicals produced by photolysis of H2O and monitored by fluorescence at 310 nm 

At low radical concentrations, the OH fluorescence is directly proportional to the OH concentration and 

the first-order rate expression can be integrated to obtain 

Ft = Ft0 exp{-k1st(t - to)} = Ft0 exp{-(ko + kr[R]) (t - to)} 

where Ft, and Ft0 are the OH radical fluorescence intensities at times t and t0, respectively,  

k1st is the total first-order decay rate,  

k0 is the first-order rate constant for OH removal in the absence of reactant (attributed to diffusion out 

of the viewing zone and reaction with possible impurities in the diluent gas) 

 

kr, is the bimolecular rate constant for the reaction of OH with the reactant, R.  
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Rate constants measurements: experimental set-up 

 
Tully et al., Twentieth Symposium (International) on Combustion/The Combustion Institute, 1984/pp. 715-721 
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Rate constants measurements 
 

 
Values of k1st are determined for various reactant concentrations by non-linear least-squares 

exponential analysis of the experimental OH fluorescence decay curves and ranged from 20-2000 s-1. 
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Rate constants measurements 

 
Wallington, Liu, Dagaut, Kurylo, Int. J. Chem. Kinet. 20 (1988) 41-49 

 
 

k1st – k0 = f( [DME]); slope => kr 

 

Experiments are repeated at several temperatures to obtain the variation of the rate constant versus 

temperature.
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Rate constants measurements 
 
Example: OH+neopentane 

 
 

Tully et al., Twentieth Symposium (International) on Combustion/The Combustion Institute, 1984/pp. 715-721 
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Modeling: Temperature dependencies of elementary reactions 

In 1889, Svante Arrhenius proposed the Arrhenius equation from direct observations of the plots of 

rate constants vs. temperature:     k=A exp(−Ea/RT) 

Later, modified Arrhenius expression:  k=A Tn exp(−Ea/RT) 
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Thrush and W ilk inson  1979 (5 .3  m bar H e)

Tsuch iya  and N akam ura  1979 (1  bar H 2)

H ochanade l et a l. 1980 (1  bar H e)

Burrow s et a l. 1981 (1  bar H 2, A r, N 2) 

Patrick  and  P illing 1982 (1  bar N 2) 

Sander et a l. 1982 (0 .13-0 .92 bar H e, A r, N 2, O 2, S F 6)

S im ona itis  and  H eick len  1982 (1  bar N 2) 

Vardanyan et a l. 1974 (1 .16 bar)

L ii et a l. 1981 (2  bar H 2) 

T aa tjes and  O h 1997 (66 m bqr A r)

S ander 1984 (1 .3  m bar H e)

T akacs and H oward 1984 (1 .3 -9 m bar H e) 

R ozenschte in  et a l. 1984 (2 .8 -33  m bar H e)
C atte l et a l. 1986 (3 .2  m bar N 2)
K urylo  et a l. 1986 (33-790 m bar N 2, O 2)
T akacs and H oward 1986 (1 .3 -8 m bar H e) 
M cA dam  et a l. 1987 (530  m bar N 2)
A ndersson et a l. 1988 (1  bar N 2)
L ightfoo t et a l. 1988 (1  bar N 2)
H ipp le r et a l. 1990 (0 .99 bar A r)
L ightfoo t et a l. 1990 (1  bar N 2)
C row ley et a l. 1991 (1  bar N 2)
M aricq  and Szente 1994 (260 m bar a ir) 
S ehested  et a l. 1997 (0 .99 bar SF 6) 

H O 2 +  H O 2 →  H 2O 2 +  O 2
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
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
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
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T h is  E va lu a tio n

F ris w e ll a n d  S u tto n  1 9 7 2
H o c h a n a d e l e t a l. 1 9 7 2  
P e e te rs  a n d  M a h n e n  1 9 7 3
D e M o re  a n d  T s c h u ik o w -R o u x  1 9 7 4
B u rro w s  e t a l. 1 9 7 7
C h a n g  a n d  K a u fa m a n  1 9 7 8
H a c k  e t a l. 1 9 7 8  
B u rro w s  e t a l. 1 9 7 9
D e M o re  1 9 7 9
H o c h a n a d e l e t a l. 1 9 8 0
L ii e t a l. 1 9 8 0  
B u rro w s  e t a l. 1 9 8 1
C o x  e t a l. 1 9 8 1  
K e ys e r 1 9 8 1  
K u ry lo  e t a l. 1 9 8 1

T h ru s h  a n d  W ilk in s o n  1 9 8 1
B ra u n  e t a l. 1 9 8 2
D e M o re  e t a l. 1 9 8 2
S rid h a ra n  e t a l.1 9 8 2
T e m p s  a n d  W a g n e r 1 9 8 2
R o z e n s h te in  e t a l.  1 9 8 4
S rid h a ra n  e t a l.1 9 8 4
D ra n s fie d  a n d  W a g n e r 1 9 8 7

G o o d in g s  a n d  H a yh u rs t 1 9 8 8
K e ys e r 1 9 8 8

H ip p le r e t a l. 1 9 9 0
H ip p le r e t a l. 1 9 9 5

S c h w a b  e t a l. 1 9 8 9  
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Modeling: Pressure dependencies 
 
 

 



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  129 
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G länzer et a l. 1977 (T  =  1350 K ) 
H ippler et a l. 1984 (T  =  296 K )
S lag le  et a l. 1988 (T  =  296 K ) 

M acPherson et a l. 1985 and 
S lag le  et a l. 1988 (T  =  296 K )



Slag le  et a l. 1988 (T  =  577 K )

M acPherson et a l. 1985 and 
S lag le  et a l. 1988 (T  =  577 K )



Slag le  et a l. 1988 (T  =  906 K )

M acPherson et a l. 1985 and 
S lag le  et a l. 1988 (T  =  906 K )



W alter et a l. 1990 (T  =  200 K ) 
W alter et a l. 1990 (T  =  300 K )
Hwang et a l. 1990 (T  =  1200 K )
Hwang et a l. 1990 (T  =  1400 K )
Du et a l. 1996 (T  =  1350 K ) 
Du et a l. 1996 (T  =  1523 K )

CH 3 + CH 3 (+ Ar) →  C 2H 6 (+  Ar)

log([A r] / m olecule  cm -3)

15 16 17 18 19 20 21 22

lo
g(

k 
/ c

m
3  m

ol
ec

ul
e-1

 s
-1

)

-12 .0

-11.5

-11.0

-10.5

-10.0









   
























 

























                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  130 

Modeling: Pressure dependencies 
Lindemann-Hinshelwood (1/2) 

Assume every collision leads to stabilization (M: collision partner) 

A + M   → A*+ M    k1(T) 

A* + M  → A + M    k2(T) 

A*    → product   k3(T) 

The quasi-steady state approximation (QSSA) for A*:  d[A*]/dt=0 

Steady state for [A*]: [A*] =k1 [A] [M] / (k2 [M] + k3) 

Rate= k3 [A*] = k3 k1 [A] [M]/(k2[M] + k3) = kuni [A] 
 
High Pressure limit ([M] → ∞, k2 [M] >> k3):  

Rate= k3 [A*] = k3 k1 [A] [M]/(k2[M] + k3) = kuni [A] 

Rate= k1 k3 [A] / k2 = kuni [A] => kuni = k1 k3 / k2 
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Modeling: Pressure dependencies 
Lindemann-Hinshelwood (2/2) 

 
Steady state for [A*]: [A*] =k1 [A] [M] / (k2 [M] + k3) 

Rate= k3 [A*] = k3 k1 [A] [M]/(k2[M] + k3) = kuni [A] 
 
Low Pressure limit ([M] → 0, k2 [M] <<k3):  

Rate= k3 [A*] = k3 k1 [A] [M]/(k2[M] + k3) = kuni [A] 

Rate= k1 [A] [M] = k0 [A]; => kuni = k1 [M] 
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EXP 
LH
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Troe fitting: improved fit (LH too far from exp.) 
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Troe Formalism in CHEMKIN format  

 

 
 

CHEMKIN uses 3- or 4-Troe parameters (in the order: a, T***, T*, T**) 

 

Example: 

 
OH + OH (+M) = H2O2 (+M)    7.224E+13 -0.37 0.0 !(94BAU/COB) High-Pres rate cst 

      LOW / 2.211E+19 -0.76 0.0/          low-P rate cst 

      TROE / 0.5 1.0E+08 1.0e-06/         a, T***, T* (T** not used here) 
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Modeling: Kinetic analyses 
 

1-Reaction pathways 

How reactions proceed?  

How reactants and intermediates are consumed?  

How products are formed? 

 

ROP(Product1):  

reaction rate (R1)/(sum of reaction rates yielding Product1) 

ROC(Product1):  

reaction rate (R1)/(sum of reaction rates consuming Product1) 

 

Net rate of production= (total rate of production) – (total rate of consumption) 
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What are the important routes for NO-reduction? 
 

Two rxns of HCCO with NO 

 

 

 

 

(94, ◊) not counter-balanced to reform NO 

(93, □) counter-balanced by (96) to reform 
NO 
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How PRF100 reactions pathways are modified by ozone injection?  
     [O3]=0         [O3]=10 ppm 

 

Reaction pathway analysis from rates of consumption (at the bottom) for iso-
octane (PRF100) at initial temperature of 800 K, initial pressure of 50 bar 
and equivalence ratio of 0.3. From Masurier et al. Energy Fuels 2013, 27, 5495−5505. 
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How reactions pathways are modified by ozone injection?  
 

 
 
[O3]=0 ppm 
 
 
 
 
 
[O3]=10 ppm 

 
 

Early reaction paths involved in neat and ozone-seeded fuel oxidation.  
From Masurier et al. Energy Fuels 2013, 27, 5495−5505. 
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How reactions pathways are modified by ozone injection?  

 

CH4

CH3

CH3O

CH2O

HCO

CO

CO2

OH

H

HO2

O2

O2

OH

OH

O2

O

H

CH4

CH3

CH3O

CH2O

HCO

CO

CO2

OH

H

HO2

O2

O2

OH

OH

O2

O

H
O

O3

O



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  140 

2-Brute force method and 1st order sensitivity analyses 
What is the impact of a variation of a given parameter (e.g., A-factor, ∆Hf) on the model predictions? 

 

What reactions influence the prediction of the formation/consumption of the product 1? 

Initial k => [product1]0 

k*ε => [product1]+  

k/ε =>[product1]- 

 

S= {[product1]ini - [product1]mod} / [product1]ini; e.g., [product1]mod= conc. after kj x 5: 
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Brute force method sensitivity analysis (k/5) 

 

Sensitivity of computed laminar burning velocity of a methane-air flame at 1 bar and Tu = 298 K to 
reaction kinetics. From Warnatz, J., The structure of laminar alkane-, alkene-, and acetylene flames. 
Symposium (International) on Combustion, 18(1), p. 380, 1981. 



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  142 

2-Brute force method and 1st order sensitivity analyses 
What is the impact of a variation of a given parameter (e.g., A-factor, ∆Hf) on the model predictions? 

 

What reactions influence the prediction of the formation/consumption of the product 1? 

Initial k => [product1]0 

k*ε => [product1]+  

k/ε =>[product1]- 

 

S= [product1]ini/ [product1]mod; e.g., [product1]mod= conc. after kj /5 

s= ∂ni / ∂πi 

s’= (∂ni/ni) / (∂πi/πi)  

where ni is the response of the model and π is a model parameter (A-factor, ∆Hf), e.g., si,j= 
(∂ci/ci) / (∂Aj/Aj) for conc. of species in reaction j: 
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1st order sensitivity analysis 

 

Sensitivity analysis of the present model at φ = 0.35 (575 K, 1 atm) and φ= 4.0 (625 K, 1 atm) in JSR 

oxidation of propanal. From New insights into propanal oxidation at low temperatures: Experimental and kinetic modeling study. 

X. Zhang et al., Proc. Combust. Inst (2019) 
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Modeling: Pressure/Temperature dependencies and reaction pathways 
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Modeling: Pressure dependencies  
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REACTIONS  k=A x Tn x exp(-E/RT)  A/cc,mole,s   n  E/cal/mol  Ref. 
 
H+      H+  M =   H2+       M     7.310E+17  -1.0            0.0  !(BAULCH 76) 
O+      O+  M =   O2+       M     1.140E+17  -1.0            0.0  !(BAULCH 76) 
O+      H+  M =   OH+       M     6.200E+16  -0.6            0.0  !(DIXON-LEWIS 81) 
H2+     O2    =   OH+      OH     1.700E+13   0.0    47780.0 !(MILLER 77) 
O+     H2     =   OH+       H      3.870E+04   2.7      6260.0 !GRI 
H+     O2     =   OH+       O     4.400E+14  -0.12  16812.0 !Nicolle 2004 
H+     O2+  M =  HO2+       M     8.000E+17  -0.8            0.0 !(WARNATZ 84) 
H+     OH+  M =  H2O+       M     8.615E+21  -2.0            0.0 !(BAULCH 76) 
H2+     OH    =  H2O+       H     2.161E+08   1.51    3430.0  !(MICHAEL 88) 
H2O+      O   =   OH+      OH     1.500E+10   1.14  17260.0  !(WARNATZ 84) 
HO2+     OH   =  H2O+      O2     2.890E+13   0.0      -497.0  !(KEYSER 88) 
HO2+      O   =   OH+      O2     1.810E+13   0.0      -400.0  !(JPL 87-41) 
H+    HO2     =   H2+      O2     4.280E+13   0.0     1411.0  !(94BAU/COB) 
H+    HO2     =   OH+      OH     1.690E+14   0.0       874.0  !(94BAU/COB) 
H+    HO2     =  H2O+       O     3.010E+13   0.0     1721.0  !(BAULCH 92) 
HO2+    HO2   = H2O2+      O2     4.075E+02   3.32   1979.0  !(HIPPLER  90) 
OH  + OH  (+M)= H2O2 (+M)        7.224E+13  -0.37         0.0  !(94BAU/COB)    
H2O2+     OH  =  HO2+     H2O    5.800E+14   0.0     9557.0  !(92HIP/TRO) 
H2O2+      H  =  HO2+      H2     1.700E+12   0.0     3750.0  !(BAULCH 72) 
H2O2+      H  =  H2O+      OH     1.000E+13   0.0     3590.0  !(WARNATZ 84) 
H2O2+      O  =  HO2+      OH     2.800E+13   0.0     6400.0  !(ALBERS 71) 
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Modeling: Hydrocarbons oxidation 
 
 
        Cool flame    High-T 

 
Fuel concentration vs. temperature 
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Modeling: Multiple cool flames 
 

 
 

 
Ignition diagram of a propane/oxygen (1:1) mixture. The numbers refer, to the number of cool flames 
occurring in the respective region. From P.G. Lignola, E. Reverchon, Prog. Energy Combust. Sci., 13 
(1987), p. 75 
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Modeling 
 
 

 
Ignition diagram for fuel concentration within the flammable range. Moving from A to B can yield to 
strong ignition 
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Modeling 
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Modeling 

 

CH3OCH3 + OH.

CH3OCH2.

CH3OCH2OO.

.CH2OCH2OOH

.OOCH2OCH2OOH

HOOCH2OCHO + OH.

.OCH2OCHO + OH.

CH2O+OCHO.

CH2O+CH3.

2 CH2O + OH.

O2

O2
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Modeling  

 

Branching reactions: multiplication of the number of active species 

 

Low-T 

R + O2→RO2; RO2→QOOH →O2QOOH → >3 radicals 

 

Medium-T 

H + O2+ M →HO2+ M;  RH + HO2→R + H2O2; H2O2+ M → 2 OH + M 

HO2+ HO2 → H2O2 

High-T 

H + O2→OH + O 
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Korcek mechanism 

γ-Ketohydroperoxides decompose to a carbonyl and a carboxylic acid 
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Waddington mechanism 
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More reaction pathways at low-T 
 

Example: di-n-propyl ether oxidation 

R + O2  RO2  QOOH 

QOOH + O2  OOQOOH 

 

OOQOOH  HOOPOOH (alternative H-transfer, not from HC-OOH) 

3rd O2 addition: 
HOOPOOH + O2  (HOO)2POO  (HOO)2P’OOH → OH + (HOO)2P’=O (C6H12O6) 
 
4th O2 addition: 
(HOO)2P’OOH + O2  (HOO)3P”OO  (HOO)3P”OOH → OH + (HOO)3P”=O (C6H12O8) 
 
5th addition … 
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Dagaut et al., MCS 2019 
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Reaction pathways to highly oxygenated products considered in atmospheric chemistry (a) 
and recently extended reaction pathways in combustion (b) 
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Pyrolysis and high-T oxidation 

 

 

 



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  159 

n-Octane pyrolysis 

 
   H-abstraction    isomerization      decomposition  isomerization/decomposition  

In R’:  radical position #1 => ethylene 
In R’:  radical position #2 => propene 
In R’:  radical position #3 => butene, heptene 
In R’:  radical position #4 => pentene, hexene  
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Bonds dissociation energies 
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Bonds dissociation energies 
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Bonds dissociation energies vs. kinetic parameters 
 
 
 

Reaction    A       n   E/cal/mol  bond, BDE 
 

CH4 = CH3 + H    1.168E+33   -5.43   108732.0  C–H, 105 kcal/mol 
 
C2H6 = C2H5 + H   6.684E+33   -5.48   105330.0  C–H, 101 kcal/mol 
 
C3H8 = C2H5 + CH3  1.698E+44   -1.77     103004.0  C–C, 88 kcal/mol 
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Single-fuel vs. multi-fuel components 
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         <-------- C-C ------------><--- C-H ---->

 
Oxidation of methane and NG-mixtures in a JSR at 1 atm and 140ms. 
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Summary 
 

 
Modeling: General information. Need accurate kinetics, thermochemistry, and transport data. Use inputs from 
theory and measurements and also estimations by analogy, tabulations. Need accurate data that are used to 
constrain the model. Reaction mechanism has a strong hierarchical structure. The core-mechanism is H2/O2 (H, O, 
OH, HO2, H2O2, O2, O3, H2). 
 
Temperature dependencies of elementary reactions. Modified Arrhenius expression: k=A Tn exp(−Ea/RT) 
 
Pressure dependencies: Lindemann-Hinshelwood, Troe. 
 
Kinetic analyses: ROP, ROC 
 
Sensitivity analyses: Probe how the model responds to variations of the kinetic paramers 
 
Pressure/Temperature dependencies and reaction pathways: cool flames, high-T oxidation (e.g., R+O2 → RO2 vs. 
R-H+HO2) 
 
Oxidation at low-T. More complex than generally considered. Combustion chemistry vs. tropospheric chemistry. 
 
Pyrolysis and high-T oxidation 
 
Single-fuel vs. multi-fuel components. The most reactive components drive the overall oxidation of the complex 
fuel (e.g., NG vs. methane). 
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Part 4 
POLLUTANTS 
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1-NOx formation  
  

1-1-Thermal-NO (Zel’dovich, 1946) 

N2+O → NO+N (75.5kcal/mole) 

N+O2 → NO+O 

N+OH→ NO+H 

Global rate (NO formation) = [N2] x [O2] exp (-133000/RT) 
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1-2-Prompt-NO (Fenimore, 1979) 
 

CH+N2 → (HCN+N) NCN + H 

CH2+N2 → HCN+NH 

C+N2 → CN+N 

Followed by: 

HCN+X → CN+HX 

NCN+ O→ CN + NO 

NCN + OH→ HCN + NO 

NCN + H→ HCN + N 

NCN + O2→ NO + NCO 

NCN + O2→ NO + CNO 
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1-3-N2O (Malte and Pratt, 1974) 
 

N2+O(+M) = N2O(+M) 

N2O+H=N2+OH 

N2O+O=NO+NO 

N2O+O=N2+O2 

N2O+OH=N2+HO2 

N2O+OH=HNO+NO 
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1-4-NNH (Bozzelli, Dean, IJCK 1995) 
 

N2+H = NNH 

NNH+H=N2+H2 

NNH+O=N2O+H 

NNH+O=N2+OH 

NNH+O=NH+NO 

NNH+OH=N2+H2O 

NNH+O2=N2+HO2 

NNH+O2=N2+H+O2 

NNH+NH=N2+NH2 

NNH+NH2=N2+NH3 

NNH+NO=N2+HNO 
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1-5-Fuel-NO 
 

Formation of HCN and NH3 by pyrolysis of amines, pyridinic compounds or pyrroles followed by 
oxidation of HCN or NH3 to NO and N2O 

 
 

(i=1, 2) 

  

Fuel-N

HCN

NH3

NHi

NO

N2

NO
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2-NOx reduction  

2-1-Reduction through combustion modifications 

2-1-1-Optimization of burner parameters – low-NOx burners 

Burner parameter optimization techniques and lowNOx burners are used to limit NO production during 

combustion. These burners are specially designed to control the mixing of air and fuel to create more 

or less turbulent flames stabilized by internal recirculation zones. The temperature of the flame is 

lowered, thus limiting the production of thermal-NO. This type of burner works as a dual internal 

staging of fuel and combustion air: 

The fuel burns with primary air (70-90%) under fuel-rich conditions. Secondary air (10-30%) is injected 

over the main combustion zone and completes the oxidation of the fuel. This increases the volume of 

the flame which decreases the flame temperature and thus the production of thermal-NO. 
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2-1-2-Flue gas recirculation (FGR, EGR) 

The recirculation of the fumes inside the oven or burner allows a dilution of the flame and therefore a 

sharp decrease in temperature. Generally, 20 to 30% of the flue gases recirculate and are mixed with 

the combustion air. The stoichiometry is not modified since the concentration of oxygen in the fumes 

is negligible. The efficiency is relatively low (<20%) because the contribution of thermal NO does not 

dominate in installations burning coal. 

 

2-1-3-Fuel staging 

Staging of the fuel allows alternation between a fuel-rich zone and a fuel-lean zone which limits the 

temperature of the flame, improves the distribution of oxygen, and limits NOx formation. 
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2-2-Chemical reduction of NOx 
2-2-1-NOx reduction by selective non-catalytic reduction SNCR (Lyon, 1974) 

   

a b c 

Effect of NO initial concentration on its removal by ammonia in lean conditions (Φ=0.1). The initial 
conditions were: 1000 ppm of NH3, 12500 ppm of O2, residence time=100 ms, 500 ppm of NO (open 
symbols and dashed lines) or 1000 ppm of NO (closed symbols and solid line). The data (symbols) 
are compared to the modeling results (lines). 
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a b c 

 

Effect of NH3 initial concentration on NO reduction and N2O formation in lean conditions (Φ=0.1). The 
initial conditions were: residence time=100 ms, 500 ppm of NO, (i) 500 ppm of NH3 and 6250 ppm of 
O2 (open symbols and dashed lines), (ii) 1000 ppm of NH3 and 12500ppm of O2 (closed symbols and 
solid line). The data (symbols) are compared to the modeling results using the present kinetic reaction 
mechanism (thin lines) and that of literature (thick lines).  
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The reduction of NO by ammonia in a plug flow reactor: comparison between the experimental 
results of Kasuya et al. [F. Kasuya, P. Glarborg, J.E. Johnsson, K. Dam-Johansen, Chem. Eng. Sci. 
50 (1995) 1455.] (symbols) and this modeling (line). The initial conditions were: 1000 ppm of NH3, 
residence time=(88 K/T) s, 500 ppm of NO,4% O2, 5% H2O, balance N2. 
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Perturbation by sulfur dioxide 
 
 
 

   

a b c 

Effect of SO2 initial concentration on NO removal by ammonia in lean conditions (Φ=0.1). The 
initial conditions were: 500 ppm of NH3, 6250 ppm of O2, residence time=100 ms, 500 ppm of NO 
(open symbols and dashed lines) and 1000 ppm of SO2 (closed symbols and solid line). The data 
(symbols) are compared to the modeling results (lines). 
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a b c 

Effect of SO2 initial concentration on NO removal by ammonia in lean conditions (Φ=0.1). The initial 
conditions were: 1000 ppm of NH3, 12500 ppm of O2, residence time=200 ms, 1000 ppm of NO (open 
symbols and dashed lines) and 1000 ppm of SO2 (closed symbols and solid line). The data (symbols) 
are compared to the modeling results (lines). 
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a b c 

Effect of SO2 initial concentration on NO removal by ammonia in fuel-rich conditions (Φ=2). The initial 
conditions were: 1000 ppm of NH3, 625 ppm of O2, 200 ms, 1000 ppm of NO (open symbols and 
dashed lines) and 1000 ppm of SO2 (closed symbols and solid line). The data (symbols) are 
compared to the modeling results (lines). 
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NH2 production: 

NH3+OH => NH2 + H2O, R(NH2)=0.863         (149) 

NH3+O => NH2 + OH, R(NH2)=0.124             (150) 

NH2 reacts with NO via (161) and (162),  

NH2 + NO => N2+H2O, R(NO)=-0.544            (161) 

NH2 + NO => NNH + OH, R(NO)=-0.322       (162) 

OH radicals are produced via  

NH2 + NO => NNH + OH, R(OH)=0.41           (162) 

H + O2 => OH + O, R(OH)=0.187                    (-74) 

NO+ HO2 => NO2 + OH, R(OH)=0.157            (99) 

NH3 + O => NH2 + OH, R(OH)=0.142            (149) 
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O-atoms are produced by reaction (-74),  

H+O2 => OH + O, R(O)=0.997                         (-74) 

SO2 contributes moderately to the removal of O-atoms through reaction (7):  

SO2 + O (+M) => SO3 (+M), R(O)=-0.03            (7) 

The model indicates that SO2 reacts mostly through 3 reactions: 

SO2 + O (+M) => SO3 (+M), R(SO2)=-0.173        (7) 

H + SO2 +M => HOSO + M, R(SO2)=-0.204      (57) 

SO2 + NH2 => NH2SO2, R(SO2)=-0.43                (72) 

HOSO formed in reaction (57) recycles SO2 via reaction (13):  

HOSO + O2 => HO2 + SO2, R(HOSO)=-0.999    (13) 
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The sequence of reactions (13) + (57)  

HOSO + O2 => HO2 + SO2        (13) 

H + SO2 +M => HOSO + M         (57) 

is equivalent to H + O2 + M = HO2 + M  

=> reduction of the radical pool since the fraction of H atoms reacting in (57) will not produce OH and 

O via reaction (-74) and OH via reaction (100), NO2 + H => NO +OH.  

Thus, under such conditions, introducing 1000 ppm of SO2 reduces the rate of production of O by a 

factor of 1.8 and that of OH by a factor of 1.75. Since O and OH are the major agents of oxidation of 

NH3, via reactions (149) and (150), the rate of ammonia oxidation is reduced by a factor of 1.7, resulting 

in the reduction of the rate of NH2 production by a factor of 1.7 and in a reduction of 42% of NO-

consumption rate. 
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Summary 

Under fuel-lean conditions, the addition of SO2 inhibits the SNCR process via:  

H + SO2 + M = HOSO + M followed by HOSO + O2 = HO2 + SO2 equivalent to the equation:  

H + O2 + M = HO2 + M. 

 

Under fuel rich conditions, the addition of SO2 inhibits the process via: 

H + SO2 + M = HOSO + M followed HOSO + H = H2 + SO2  

and via H + SO2 + M = HOSO + M followed by HOSO + O2 = HO2 + SO2. 

 

SO2 does not reduce the efficiency of the thermal de-NOx process but shifts the optimal temperature to 

higher values. 
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Further inhibiting effects of SO2 
 

a b 
The effect of SO2 on the oxidation of a CO/H2 mixture in a plug-flow reactor. Initial conditions: (a) CO = 1.0%, 
H2 = 1.0%, O2 = 1.0%, H2O = 2.0%, balance N2, without and with SO2 = 1.2%, residence time is 192.7/T or 
192.3/T; (b) CO = 1.0%, H2 = 1.0%, O2 = 0.5%, H2O = 2.0%, balance N2, without and with SO2 = 0.3%, residence 
time is 192.7/T or 192.3/T. Inhibition is due to H+SO2+M=HOSO+M followed by HOSO+H=H2+SO2. From Dagaut 
et al., Int J Chem Kinet 35: 564–575, 2003. 
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2-2-2-NOx reduction by reburning) 
 
 
 
 
3
 
 
 
2
 
 
 
 
1

 

(1) Thermal-NO production in near-stoichiometric conditions;  
(2) fuel-rich zone, NO + HC → N2, HCNOx;  
(3) excess-air, HCNOx oxidation → NO 
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TFN (NO+HCN) vs eq. ratio; 1300 K, 1000ppm 
NO, 8800 ppm C, 0.12s. Reburn fuels: NG-blend 
■; ethane *; ethylene ○, acetylene ●; NG △; 
propene □; propane ◊; n-butane ∆; i-butane▲. 

TFN (NO+HCN) vs. T for 8 reburn fuels: NG-
blend ■; ethane *; ethylene ○, acetylene ●; NG △; 
propene □; propane ◊; n-butane ∆; i-butane▲. 
Stoichiometric mix, 1000ppm NO, 8800 ppm C, t: 
0.12-0.16s 
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HCCO production  
 

 
 



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  198 

Inhibiting effect of SO2 on NO-reburning using 2 reburn fuels at 1300K 
 

 
γ(NO) = X(NO)w. SO2 / X(NO)w/o SO2 

The residual of NO increases in presence of sulfur dioxide 
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3-UHCs and Soot 
Organic compounds in the troposphere 
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Oxidation of organic compounds in the troposphere 
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Terpenes to HOMs and Secondary Organic Aerosols (SOAs) 

  

From Belhadj et al. ICCK, 2019  
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Additional pathways to HOMs by Wang et al. 
PNAS (2017) 
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HOMs observed in a JSR 
 

 
Limonene oxidation sample from a JSR analyzed by FIA and HESI (negative mode).  
Group I corresponds to compounds resulting from multiple oxidation reactions including fragmentation and 
condensation.  
Groups II and III correspond to higher molecular masses, resulting from addition and condensation reactions. 
R. Benoit, N. Belhadj, M. Lailliau, P. Dagaut, Atm. Chem. Phys., 2021 https://doi.org/10.5194/acp-2020-1070 
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Limonene oxidation: Kendrick diagram 
Kendrick's mass analysis (Kendrick, 1963) allows 
representing in two dimensions and in a new reference 
frame, a complex mass spectrum of an organic mixture. 
This reference frame is based on a mass defect 
calculated from structural units (CH2, O, CHO, ...). In a 
Kendrick representation, the homologous series 
(constructed by the repeated addition of structural units 
CH2, O, CHO, ...) are aligned on the same horizontal 
line. The mass defect is calculated by the difference 
between the Kendrick mass and the nominal mass. If 
CH2 is chosen as the structural unit, in Kendrick’s plots, 
the x-axis represents the Kendrick Mass: 

KM(𝑪𝑯𝟐) = 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒎𝒂𝒔𝒔 ∗ 𝒏𝒐𝒎𝒊𝒏𝒂𝒍 𝒎𝒂𝒔𝒔 𝒐𝒇 𝑪𝑯𝟐𝒆𝒙𝒂𝒄𝒕 𝒎𝒂𝒔𝒔 𝒐𝒇 𝑪𝑯𝟐 , 
 

The y-axis represents the Kendrick Mass Defect:  𝑲𝑴𝑫(𝑪𝑯𝟐) = 𝒏𝒐𝒎𝒊𝒏𝒂𝒍 𝒎𝒂𝒔𝒔 − 𝑲𝒆𝒏𝒅𝒓𝒊𝒄𝒌 𝒎𝒂𝒔𝒔 (𝑪𝑯𝟐) 
 
The number of double bond equivalent (DBE) 
represents the sum of the number of unsaturation and 
ring present in a compound. 

All the chemical products, resulting from limonene oxidation by ozonolysis/photooxidation and autoxidation gathered in the form of 
a Kendrick diagram correlated to the DBE:  new chemical products from autoxidation experiments in JSR;  products common to 
the 3 modes of oxidation;  chemical products with molecular formula not observed in JSR.  

https://doi.org/10.5194/acp-2020-1070  
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Pollutants from Diesel/biofuels combustion in I.C. engine  
 

 
Engine and gas sampling system. DNPH+carbonyl; HPLC with UV detection @360nm. 

From Dagaut et al., J. Eng. Gas Turbines Power 141, 031028-1 (2019)  
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Diesel engine conditions 

Nbr of cylinders 4 

Cycle 4  

Cylinder (cm3) 1460.74 

Vol. Ratio 15.21 

injector Continental SA. 

Type of injection Direct Common Rail

Nbr of injectors 4 

Nbr of injection 3 per cycle 

Post-treatment no 
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 Pollutants from Diesel/biofuels combustion in I.C. engine  
Additives used (mix Diesel/additive 90/10 vol.) 

Mix DCN Additive Chemical class Formula 
Density   M.W.  

(g/mL @ 25°C) (g/mol) 

55,34 none     

46.32 EtNOL Alcool C2H6O 0.789 46.07 

49.71 1-BNOL Alcool C4H10O 0.810 74.12 

48.96 CarbD* ester of carbonate C5H10O3 0.975 118.13 

54.22 OctM methyl ester  C9H18O2 0.877 158.24 

55.56 EMHC Mixed methylesters C17.92H33O2 0.883# 280 

54.75 TPGME ether  C10H22O4 0.963 206.28 

52.74 SPK Mixed paraffins‡ C11.03H23.37 0.761# 156 
#  @ 15°C;   ‡ 0,21% vol. aromatics; * DEC 
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 Pollutants from Diesel/biofuels combustion in I.C. engine 

 

Global emission of carbonyl compounds at I.C.E. exhaust  
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Pollutants from Diesel/biofuels combustion in I.C. engine 

 

 

Shahla, Ph.D., 2015 
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Soot and PAHs  
H.A.Michelsen, Proc. Combust. Inst. 36, 717-735 (2016) 
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PAHs formation via the HACA mechanism (Frenklach and Wang) 
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Benzene formation 
 
Fuels:  acetylene (HC≡CH) 

propene (CH3-CH=CH2), propyne (HC≡C-CH3), allene (H2C=C=CH2) 
1,3-butadiene (H2C=CH-CH=CH2) 

Conditions: JSR, 1 atm, 900-1300 K 
 
Benzene formation from acetylene, allene and propyne proceeds through a C3 channel involving the 
recombination of propargyl radicals: 

C3H3 + C3H3 → C6 intermediates → Benzene (1) 
 
In the case of 1,3-butadiene, the formation of benzene is driven by 2 competitive routes, a (C2+C4) 
route and the C3 route (1): 

1,3-C4H6 + C2H3 → C6 intermediate →Benzene (2) 
1,3-C4H5 + C2H2 → C6 intermediate →Benzene (3)  

According to our computations, the formation of 1,3-C4H5 results from the intermediate formation of 
1,3-cyclopentadiene (1,3-CPD): 

aC3H5 + C2H2 →1,3-CPD → C5H5 → 1,3-C4H5 (5) 
 
For propene, the early formation of benzene involves a C3 route: the recombination of allyl radicals, 
formed by H-atom abstraction from propene, producing 1,5-hexadiene 

aC3H5+ aC3H5 → 1,5-C6H10 →C6H9 →cyclo-C6H9 →1,3-cyclohexadiene →C6H7 →C6H6 

 
From P. Dagaut and M. Cathonnet. A comparative study of the kinetics of benzene formation from unsaturated C2 
to C4 hydrocarbons, Combust. Flame, 113, 620 (1998). 
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Pollutants from Jet A-1/biofuels combustion 

 
Experimental set-up, premixed sooting flame.  

From Dagaut et al., J. Eng. Gas Turbines Power 141, 031028-1 (2019)  
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 Pollutants from Jet A-1/biofuels combustion 
 

Experimental conditions  

Fuel  Formula   Fuel flow rate 
(cm3. s-1) 

Air flow rate 

(cm3. s-1) 
 E.R. 

    N2 O2   

Jet A-1  C11 H22 1.58 35 11.7  2.23 

Jet A-1/1-BNOL*  C9.6 H19.6 O0.2 1.87 35 12.0  2.24 

Jet A-1/CarbD*  C9.8 H19.6 O0.6 1.80 35 11.7  2.28 

Jet A-1/OctM*  C10.6 H21.2 O0.4 1.68 35 11.3  2.28 

Jet A-1/2,5-DMF*  C10 H19.2 O0.2 1.70 35 11.2  2.23 

* Jet A-1/additif 80:20 v/v 
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HPLC Chromatogram showing 18 HAPs after extraction 
 

 
Signal = f(time) 
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 Pollutants from Jet A-1/biofuels combustion 
 

 

 
 

ng/mg of soot 
 

Concentration of 18 HAPs on soot particles  

 

Jet A-1/1-BNOL
Jet A-1/ OctM
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 Pollutants from Jet A-1/biofuels combustion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mass fraction of small PAHs 
Mass fraction of mid-size PAHs 
Mass fraction of large PAHs 

Contribution of ≠ classes of PAHs to total amount of PAHs on soot (Shahla, 2015) 
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Pollutants from Jet A-1/biofuels combustion 
 

Global toxicity of soot samples* 
Fuel Equivalent toxicity(TEQ) Variation to Jet A-1 %

Jet A-1/1-BNOL 1,294 -99 

Jet A-1/CarbD 10,834 -94 

Jet A-1/OctM 83,976 -57 

SPK 115,904 -40 

Jet A-1 193,574 0 

Jet A-1/2,5-DMF 574,136 +197 

From Shahla ( 2015) 

 
*Nisbet et Lagoy (Regulatory Toxicology and Pharmacology, vol. 16, pp. 290-300, 1992) defined 
a global equivalent toxicity:  

𝑇𝐸𝑄 = ൭ ෍ 𝐶௜ × 𝑇𝐸𝐹௜௜ୀு஺௉ ൱ ∙ 𝑓 
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Effect of trace species on ignition: NOx, ozone 
 

1-NOx-HC interactions 

The mutual sensitization of the oxidation of methane and NO proceeds through the NO to NO2 

conversion by HO2 and CH3O2.  

At 1-10 atm, the conversion of NO to NO2 by CH3O2 is more important at low temperatures (800 K) 

than at higher temperatures (850-900 K) where the reaction of NO with HO2 dominates the production 

of NO2.  

The NO to NO2 conversion is enhanced by the production of HO2 and CH3O2 radicals from the 

oxidation of the fuel. The production of OH resulting from the oxidation of NO promotes the oxidation 

of the fuel: NO + HO2 => OH+ NO2 is followed by OH + CH4 => CH3. At low temperature, the reaction 

further proceeds via CH3 + O2 => CH3O2; CH3O2 + NO => CH3O + NO2. At higher temperature, the 

production of CH3O involves NO2: CH3 + NO2 => CH3O.  

The sequence of reactions: CH3O => CH2O + H; CH2O +OH => HCO; HCO + O2 => HO2 and H + O2 

=> HO2. => CH2O + H; CH2O +OH => HCO; HCO + O2 => HO2 and H + O2 => HO2. 
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The mutual sensitization of the oxidation of methane and NO in a JSR at 1 atm: Effect of the introduction of 

200ppm of NO on the oxidation of methane in fuel-lean conditions (φ=0.1, 2500 ppm of CH4, 50000 ppm of O2, 

t=120 ms). (a): The dashed-dotted line represents the results obtained with the mechanism and thermochemical 

data of [Hori 2002]. The results obtained with the mechanism and thermochemical data of [Hori 1998] are 

presented as dashed lines, those using [Faravelli 2003] as a dotted line (…   …), the results of the proposed model 

are presented as full lines. In (b) and (c):The filled symbols and the continuous lines refer respectively to the data 

and the simulations (proposed scheme) with NO added; the open symbols and dotted lines refer respectively to the 

data and simulations (proposed scheme) without NO. 
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The mutual sensitization of the oxidation of methane and NO in a JSR at 1 atm: Effect of the introduction of 

200ppm of NO on the oxidation of methane in fuel-lean conditions (φ=0.1, 2500 ppm of CH4, 50000 ppm of O2, 

t=240 ms). (a)The experimental results (symbols) are compared to the computations (dashed lines using the model 

of [Faravelli 2003], continuous line for this work). In (b) and (c):The filled symbols and the continuous lines refer 

respectively to the data and simulations with NO added; the open symbols and dotted lines refer respectively to the 

data and simulations without NO. 
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The mutual sensitization of the oxidation of methane and NO in a JSR at 10 atm: Effect of the introduction of 

200ppm of NO on the oxidation of methane in fuel-lean conditions (φ=0.5, 2500 ppm of CH4, 10000 ppm of O2, 

t=1000 ms). (a)The NOx experimental results are compared to the computations. (b) and (c):The filled symbols and 

the continuous lines refer respectively to the data and simulations with NO added; the open symbols and dotted 

lines refer respectively to the data and simulations without NO. 
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The mutual sensitization of the oxidation of methane and NO in a JSR at 10 atm ( 200 ppm of NO, φ=1, 2500 

ppm of CH4, 5000 ppm of O2, t=1000 ms). Comparison between modeling (lines) and experiments (symbols). 
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The mutual sensitization of the oxidation of methane and NO in a JSR at 10 atm ( 200 ppm of NO, φ=0.5, 

2500 ppm of CH4, 10000 ppm of O2, t=240 ms). Comparison between modeling (lines) and experiments (symbols). 

T/K

800 900 1000 1100

M
ol

e
F

ra
ct

io
n

0

0.001

0.002

0.003

0.004

T/K

800 900 1000 1100

M
ol

e
F

ra
ct

io
n

0

0.001

0.002

0.003

0.004
CH4
CO

CO2
H2O

T/K

800 900 1000 1100

M
ol

e
F

ra
ct

io
n

0

5e-5

1e-4

1.5e-4

2e-4

T/K

800 900 1000 1100

M
ol

e
F

ra
ct

io
n

0

5e-5

1e-4

1.5e-4

2e-4

CH2O

NO

NO2



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  225 

 

The mutual sensitization of the oxidation of methane and NO in a tubular flow reactor at 1 atm (112 ppm of 

NO, 200 ppm of CH4, 5% of O2, t=2.8 s). Comparison between modeling (lines) and experiments (symbols). 
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Comparison between this modeling (lines) and experimental data (symbols) obtained in a tubular flow reactor at 

1000 K [Hori 1998] (initial conditions: 20 ppm of NO and 50 ppm of methane in air). 
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The mutual sensitization of the oxidation of methane and NO in a JSR at 10 atm ( 200ppm of NO, φ=1, 2500 

ppm of CH4, 5000 ppm of O2, t=1000 ms). Comparison between several modeling results using the mechanism 

and thermochemical data of [Hori 1998] (continuous line), [Hori 2002] (dashed lines), [Faravelli 2003] (dash-dot 

line) and experiments (symbols). 
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Normalized rates of reaction of NO at 1 atm (continuous lines) and 10 atm (dotted lines).  

HNO+ NO2  = NO +   HONO (133); NO + HO2 = NO2 + OH (144); NO2 + H = NO + OH (149); 

CH3+NO2=CH3O+NO (1025); CH3O2+NO=CH3O+NO2 (1029)     
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Schematic representation of the reaction paths involved in the mutual sensitization of the oxidation of 

methane and NO. 
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Sensitivity of the computations to the heat of formation of the methylperoxy radical (initial conditions: 2500 

ppm of methane, 50000 ppm of oxygen, 200 ppm of nitric oxide, φ=0.1, 240 ms). The upper value of ΔH°298 

(CH3O2) used was 6.1 kcal/mole (dashed lines) and the lower value was 2.5 kcal/mole (continuous lines). 

 
M. Hori, N. Matsunaga, N.M. Marinov, J.W. Pitz, C.K. Westbrook, Proc. Combust. Inst. 27 (1998) 389-396. 
M. Hori, Y. Koshiishi, N. Matsunaga, P. Glaude, N. Marinov, Proc. Combust. Inst. 29 (2002) 2219-2226. 
T. Faravelli, A. Frassoldati, E. Ranzi, Combust. Flame 132 (2003) 188-207. 
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Overview of NOx-HC interactions 
                             oxidation      reduction 

 
 


NO + HO2 → NO2 + OH 
NO + RO2 → NO2 + RO 

 
 
 


NO + HCCO → HCNO + CO
HCNO + H → HCN + OH 
NO + HCCO → HCN + CO2 
HCN → HNCO →NH2 → NH
NH + NO → N2 + OH 
NH2 + NO → N2 + H2O 
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HCCI control via Sensitization by ozone (O3 → O2 + O) 

  
Masurier et al., ICE2013 
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Results: HCCI control via Sensitization by ozone (O3 → O2 + O)  

 
Masurier et al., ICE2013 

w/o O3:   O2 + fuel → HO2 +R followed by HO2 + fuel → H2O2 +R  (slow) 

with O3:  O + fuel → OH +R followed by OH + fuel → H2O +R   (FAST)
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Results: HCCI control via Sensitization by ozone (O3 → O2 + O)  
In-cylinder pressures and Heat release rates 

 

 
Masurier et al., ICE2013 

w/o O3:   O2 + fuel → HO2 +R followed by HO2 + fuel → H2O2 +R  (slow) 

with O3:   O + fuel → OH +R followed by OH + fuel → H2O +R   (FAST) 
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Results: HCCI control via Sensitization by Ozone, NO, and NO2 

 

In-cylinder pressure and heat release rate traces without any species and with 20 ppm of each 
species separately injected. Masurier et al., SIC 35/ PROCI 2015 
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HCCI control via Sensitization by Ozone, NO, and NO2 

 

Shift of the CA50 as a function of the three species when they are separately injected. (CA50 is the 
crank angle where 50 % of the fuel has burned) Masurier et al., SIC 35/ PROCI 2015 
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 HCCI control via Sensitization by Ozone, NO, and NO2 
Simple computations to understand the process 

● Ozone mainly decomposes into oxygen molecules (O2) and O-atoms, FAST. 
Then, the fuel reacts directly with O-atoms to yield OH radicals and rapid 
oxidation of the fuel ensues: C8H18+O→C8H17+OH (a) followed by 
C8H18+OH→C8H17+H2O (b). 

 

 
● NO is mostly consumed by reaction with HO2, resulting in the initial oxidation 
of the fuel via C8H18+O2→C8H17+HO2, SLOW,  
OH radicals are produced via NO+HO2→NO2+OH, FAST. 
Subsequently, rapid fuel consumption can take place via (b) due to OH 
production. Consequently, as nitric oxide requires an HO2 radical to yield 
an OH radical, this explains the lower effect of NO on ignition delays 
compared to ozone.  

 

 

 

 

 

 

 
● Nitrogen dioxide addition: OH production results from the following reaction 
system: CH3+NO2→CH3O+NO; NO2+HO2→HONO+O2; 
HONO+M→NO+OH+M; and NO+HO2→NO2+OH. As nitrogen dioxide presents 
intermediate reactions before OH production, its effect on ignition delays is the 
lowest of the 3 additives considered.
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HCCI control via Sensitization by Ozone and NOx 

 
In-cylinder pressure traces and heat release rate traces for alcohols as a function of the ozone input. 
Black curves correspond to the average of 100 cycles recorded and areas represent the variation over 

100 cycles. Masurier et al., Appl. Energ. 2016 
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Summary 
 

NOx formation: Zeldovich, Prompt-NO, N2O, NNH, Fuel-NO 

NOx reduction: SNCR, Reburning 

UHC and soot 

Effect of trace species on ignition: NOx, ozone. Enhanced oxidation rate by ‘traces’ of oxidants 

                                                           oxidation     reduction 

 
 


NO + HO2 → NO2 + OH 
NO + RO2 → NO2 + RO

 
 


NO + HCCO → HCNO + CO
HCNO + H → HCN + OH 
NO + HCCO → HCN + CO2  
HCN → HNCO →NH2 → NH
NH + NO → N2 + OH 
NH2 + NO → N2 + H2O 
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Part 5 
COMMERCIAL FUELS, SURROGATES, 

BIOFUELS 
 

 
        (from W.J.Pitz and C.J.Mueller) 
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MODELING USING SURROGATES/MODEL-FUELS 

 

Surrogate model fuels*are used for the kinetic modeling to simplify the problem 
 

DCN, fuel composition in terms of chemical classes and hydrocarbons concentrations, 

H/C ratio, and the availability of valid chemical kinetic oxidation sub-models are used 

to select the components of the model fuels.  

 

DCN is a parameter related to fuel ignition 

 

* S. Dooley et al., Combust. Flame 157 (12) (2010) 2333-2339. 
   F.L. Dryer, Proc. Combust. Inst. 35 (2015) 117-144. 
   A. Agosta et al., Exp. Thermal Fluid Sci. 28 (7) (2004) 701-708.  
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Modeling using surrogates/model-fuels  

 

The fuel composition impacts the relative formation of products and intermediates.  

 

The fuel composition impacts radical pool and cross-reactions 

 

The H/C ratio is a parameter influencing soot formation.  

 

Threshold sooting index (TSI) is a parameter related to soot tendency 

 

Molecular weight is a parameter related to fuel diffusivity 

 

 

Validation of this approach needs extensive testing  
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5.1 Gasoline 
Gasoline is constituted by several hundreds of components: it is not feasible to incorporate of all them 
in a kinetic model.  

Therefore, surrogate model fuels are used to describe gasoline behavior.  

In this example, 4 hydrocarbons of dominant gasoline chemical classes were chosen to represent a 
commercial gasoline:  

iso-octane for iso-paraffins,  

toluene for aromatics,  

1-hexene for olefins,  

ETBE for oxygenated additives. 

Mole fraction composition of the different surrogate gasoline mixtures 

 Iso-octane Toluene 1-hexene ETBE

Mixture 1 50 35 15 0 

Mixture 2 47.5 33.25 14.25 5 

Mixture 3 45 31.5 13.5 10 
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Reactions of interaction between different fuel fragments during the oxidation of surrogate mixtures. 

1-C6H12 + i-C4H7 = 1,3-C6H11 + i-C4H8 
1-C6H12 + i-C4H7 = 1,4-C6H11 + i-C4H8 
1-C6H12 + i-C4H7 = 1,5-C6H11 + i-C4H8 
1-C6H12 + i-C4H7 = 1,6-C6H11 + i-C4H8 
1-C6H12 + dimethyl 4,4-penthyl 3-ene = 1,3-C6H11 + dimethyl 4,4-pentene 
1-C6H12 + dimethyl 4,4-penthyl 1-ene 2 = 1,4-C6H11 + dimethyl 4,4-pentene 
1-C6H12 + dimethyl 2,4-penthyl 1-ene 2 = 1,5-C6H11 + dimethyl 2,4-pentene2 
1-C6H12 + C4H5O = 1,3-C6H11 + OC4H6 
1-C6H12 + C4H5O = 1,4-C6H11 + OC4H6 
1-C6H12 + C4H5O = 1,5-C6H11 + OC4H6 
1-C6H12 + C4H5O = 1,6-C6H11 + OC4H6 
i-C8H18 + 1,3-C6H11 = 1-C6H12 + trimethyl 2,2,4-penthyl 
i-C8H18 + 1,3-C6H11 = 1-C6H12 + trimethyl 2,2,4-penthyl-4 
i-C8H18 + 1,3-C6H11 = 1-C6H12 + trimethyl 2,2,4-penthyl-3 
i-C8H18 + n-C3H7 = C3H8 + trimethyl 2,2,4-penthyl 
i-C8H18 + n-C3H7 = C3H8 + trimethyl 2,2,4-penthyl-4 
i-C8H18 + n-C3H7 = C3H8 + trimethyl 2,2,4-penthyl-3 
i-C8H18 + n-C3H7 = C3H8 + trimethyl 2,2,4-penthyl-3 
i-C8H18 + n-C3H7 = C3H8 + trimethyl 2,4,4-penthyl 
1,3-C6H11 + C7H8 = 1-C6H12 + C6H5CH2 
1,4-C6H11 + C7H8 = 1-C6H12 + C6H5CH2 
1,5-C6H11 + C7H8 = 1-C6H12 + C6H5CH2 
1,6-C6H11 + C7H8 = 1-C6H12 + C6H5CH2 
1,3-C6H11 + C6H5CH2 = C7H8 + 1,2-C6H10 
1,4-C6H11 + C6H5CH2 = C7H8 + 1,3-C6H10 
1,6-C6H11 + C6H5CH2 = C7H8 + 1,6-C6H10

 

M. Yahyaouiet al., Proc. Combust. Inst. 31, 385–391 (2007) 
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Comparison between neat hydrocarbons ignition delay times and mixture 3 (45% iso-octane, 31.5 
toluene, 13.5% 1-hexene, 10% ETBE).  

M. Yahyaouiet al., Proc. Combust. Inst. 31, 385–391 (2007) 
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Comparison between experimental and computed concentration profiles in JSR for the oxidation of 
the Mixture 3 (45% iso-octane, 31.5 toluene, 13.5% 1-hexene, 10% ETBE) 

M. Yahyaouiet al., Proc. Combust. Inst. 31, 385–391 (2007) 
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Experimental mole fractions of benzene, 1,3-butadiene and formaldehyde obtained from the oxidation 
of different initial fuel composition versus temperature in a JSR. (45% iso-octane, 31.5 toluene, 13.5% 
1-hexene, 10% ETBE). Mix 1: 0% ETBE; Mix 2: 5% ETBE; Mix 3: 10% ETBE. 

M. Yahyaouiet al., Proc. Combust. Inst. 31, 385–391 (2007) 

 

  

800 900 1000 1100 1200
Temperature (K)

1E-006

1E-005

C 6
H

6 m
ol

ar
 fr

ac
tio

n

Mixture 1
Mixture 2
Mixture 3

800 840 880 920 960 1000 1040
Temperature (K)

1E-006

1E-005

1,
3-

C 4
H

6 m
ol

ar
 fr

ac
tio

n 

Mixture 1
Mixture 2
Mixture 3

800 900 1000 1100 1200
Temperature (K)

1E-007

1E-006

1E-005

CH
2O

  m
ol

ar
 fr

ac
tio

n

Mixture 3
Mixture 2
Mixture 1



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  248 

 

  

Comparison between experimental (symbols) and computed (lines) ignition delays of the Mixture 2 
and 3 in a shock tube M. Yahyaouiet al., Proc. Combust. Inst. 31, 385–391 (2007) 
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5.2 Diesel 
Example of Diesel oxidation study: The major components of the diesel fuel studied were n-paraffins 
(36.6% by weight), i-paraffins (14.8% w), cycloalkanes (31.4% w) and aromatic hydrocarbons (17.3% 
w) including mono- and poly-aromatic hydrocarbons. 

The global formula for this diesel fuel was determined to be C15.5H30. 
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The reaction mechanism consisted of 2755 reversible reactions involving 377 species.  

The rates of reaction were computed from the kinetic reaction mechanism and the rate constants 
calculated at the experimental temperature. The rate constants for the reverse reactions were 
computed from the forward rate constants and the appropriate equilibrium constants.  

The pressure dependencies of P-dependent reactions were taken into account and updated.  

 

The oxidation mechanism for the diesel fuel was obtained by merging the individual oxidation 
mechanisms previously validated for the oxidation of n-hexadecane, iso-octane, n-propylcyclohexane, 
n-propylbenzene, and 1-methylnaphtalene.  

Few ‘coupling reactions’ were included whereas no specific kinetic adjustments were made to better fit 
pressure dependences. As in previous work from this group, the proposed kinetic mechanism has a 
strong hierarchical structure. 

 

The model-fuel had 4 constituents: n-hexadecane (36.1% by weight, 23.5% vol.), n-
propylcyclohexane (23.1%w, 26.9% vol.), n-propylbenzene (18.7% w, 22.9% vol.), iso-octane (14.7% 
w, 19% vol.), and 1-methylnaphthalene (7.4%w, 7.7% vol.). 
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Synthetic diesel fuel oxidation in a JSR at 1 atm and φ = 0.5. The initial conditions were:  

C15.5H30, 0.03% ; O2, 2.30% ; N2, 97.60% ; τ=0.1s.  

The experimental data (symbols) are compared to the computations (lines and small symbols). 

K. Mati et al., Proc. Combust. Inst. 31, 2939–2946 (2007) 
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Synthetic diesel fuel oxidation in a JSR at 10 atm and φ =0.5.  

The initial conditions were: C15.5H30, 0.05% ; O2, 1.38% ; N2, 98.57% ; τ=0.5s. 

K. Mati et al., Proc. Combust. Inst. 31, 2939–2946 (2007) 
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Synthetic diesel fuel oxidation in a JSR at 10 atm and φ =1.0.  

The initial conditions were: C15.5H30, 0.05% ; O2, 0.69% ; N2, 99.26% ; τ=0.5s. 

K. Mati et al., Proc. Combust. Inst. 31, 2939–2946 (2007) 
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Synthetic diesel fuel oxidation in a JSR at 10 atm and φ =2.  The initial conditions were: C15.5H30, 

0.05% ; O2, 0.345% ; N2, 99.6% ; τ=0.5s. 

K. Mati et al., Proc. Combust. Inst. 31, 2939–2946 (2007) 
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Main reaction paths during the oxidation of the model fuel in a JSR at 10 atm, 1000 K, and φ=1.0. 
Initial conditions: C15.5H30, 0.05%; O2, 0.69%; N2, 99.26%; τ=0.5s. 
K. Mati et al., Proc. Combust. Inst. 31, 2939–2946 (2007)  
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2nd example of Diesel oxidation study: 
A surrogate Diesel fuel called the IDEA fuel, consisting of 70% n-decane and 30% 1-methyl 

naphthalene was formulated previously as part of the Integrated Development on Engine Action 

(IDEA) program. This fuel mixture matches both the physicochemical properties and combustion 

behavior of a conventional Diesel fuel. The IDEA fuel has properties similar to those of a conventional 

Diesel fuel, i.e. it has a normal density of 798 kg/m3 at 20°C, a CN of ca. 53, and hydrogen-to-carbon 

ratio of 1.8. 

The kinetic oxidation mechanisms of large n-paraffins and aromatics have been developed separately 

in several fundamental studies and merged to simulate the oxidation of surrogate gasoline, kerosene, 

and Diesel fuels. A long carbon chain n-paraffin compound is highly suitable for representing the 

paraffinic fraction of a Diesel fuel because of the high concentration of these chemicals in this kind of 

fuel. On the other hand, aromatic hydrocarbons play an important role in soot formation reactions and 

must be used in Diesel surrogate mixtures. They also contribute to the reduction of the cool-flame 

oxidation of long chain n-alkanes. 
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Experimental species concentration profiles from the oxidation of the conventional (filled symbols) and 
IDEA surrogate (empty symbols) Diesel fuels in a JSR at 10 atm, ϕ=0.25 and τ= 1s. 
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Experimental species concentration profiles from the oxidation of the conventional (filled symbols) and 
IDEA surrogate (empty symbols) Diesel fuels in a JSR at 10 atm, ϕ= 0.5 and τ= 1s. 
 H. P. Ramirez L et al. , Energy & Fuels 24(3) 1668–1676 (2010)   

T/K
500 600 700 800 900 1000 1100

Mo
le

Fr
ac

tio
n

0

0.002

0.004

0.006

0.008

T/K
500 600 700 800 900 1000 1100

Mo
le

Fr
ac

tio
n

0

0.002

0.004

0.006

0.008
CO

CO2

T/K
500 600 700 800 900 1000 1100

Mo
le

Fr
ac

tio
n

0

1e-4

2e-4

3e-4

4e-4

T/K
500 600 700 800 900 1000 1100

Mo
le

Fr
ac

tio
n

0

1e-4

2e-4

3e-4

4e-4
CH4

C2H4

C3H6

T/K
500 600 700 800 900 1000 1100

Mo
le

Fr
ac

tio
n

0

1e-4

2e-4

3e-4

4e-4

T/K
500 600 700 800 900 1000 1100

Mo
le

Fr
ac

tio
n

0

1e-4

2e-4

3e-4

4e-4
H2

CH2O

T/K
500 600 700 800 900 1000 1100

Mo
le

Fr
ac

tio
n

0

0.005

0.01

0.015

0.02

0.025

0.03

T/K
500 600 700 800 900 1000 1100

Mo
le

Fr
ac

tio
n

0

0.005

0.01

0.015

0.02

0.025

0.03

H2O

O2



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  259 

 

 

Experimental species concentration profiles from the oxidation of the conventional (filled symbols) and 
IDEA surrogate (empty symbols) Diesel fuels in a JSR at 10 atm, ϕ= 1 and τ= 1s. 

H. P. Ramirez L et al. , Energy & Fuels 24(3) 1668–1676 (2010)   
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Experimental species concentration profiles from the oxidation of the conventional (filled symbols) and 
IDEA surrogate (empty symbols) Diesel fuels in a JSR at 10 atm, ϕ= 1.5 and τ= 1s.  

H. P. Ramirez L et al. , Energy & Fuels 24(3) 1668–1676 (2010)   
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The IDEA surrogate Diesel fuel oxidation in a JSR at 10 atm, τ= 1s and ϕ= 0.25. The initial mole fractions 
were: 1 -Methylnaphthalene, 0.03%; n-Decane, 0.07%; O2, 5.96%; N2, 93.94%. The experimental data 
(filled symbols) are compared to the computations (lines with empty symbols). 
H. P. Ramirez L et al. , Energy & Fuels 24(3) 1668–1676 (2010)    
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The IDEA surrogate Diesel fuel oxidation in a JSR at 10 atm, τ= 1s and ϕ= 0.5. The experimental data 
(filled symbols) are compared to the computations (lines with empty symbols).  
H. P. Ramirez L et al. , Energy & Fuels 24(3) 1668–1676 (2010)   
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The IDEA surrogate Diesel fuel oxidation in a JSR at 10 atm, τ= 1s and ϕ= 1.0. The experimental data 
(filled symbols) are compared to the computations (lines with empty symbols). 
H. P. Ramirez L et al. , Energy & Fuels 24(3) 1668–1676 (2010)    
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The IDEA surrogate Diesel fuel oxidation in a JSR at 10 atm, τ= 1s and ϕ= 1.5. The experimental data 
(filled symbols) are compared to the computations (lines with empty symbols). 
H. P. Ramirez L et al. , Energy & Fuels 24(3) 1668–1676 (2010)   
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The IDEA surrogate Diesel fuel oxidation in a JSR at 6 atm, τ= 0.6s and ϕ= 0.5. The experimental data 
(filled symbols) are compared to the computations (lines with empty symbols). 
H. P. Ramirez L et al. , Energy & Fuels 24(3) 1668–1676 (2010)  
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The IDEA surrogate Diesel fuel oxidation in a JSR at 6 atm, τ= 0.6s and ϕ= 1.0. The experimental data 
(filled symbols) are compared to the computations (lines with empty symbols). 
H. P. Ramirez L et al. , Energy & Fuels 24(3) 1668–1676 (2010)   
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5.3 Jet fuels 
Example of early jet fuel oxidation study: 

Oxidation of kerosene in a JSR at 10 atm and t=0.5 s (initial conditions: 1000 ppmv of kerosene TR0, 
16500 ppmv of O2, diluent nitrogen). Model fuel: n-decane/ n-propylbenzene/ n-propyl-cyclohexane 
(74% / 14% / 11% mole).  
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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Introduction 
 

Kerosene (Jet A, Jet A1, JP-8, TR0) is a complex mixture of alkanes (50-65% vol.), mono- and poly-
aromatics (10-20% vol.) and cycloalkanes or naphtenes (mono- and polycyclic, 20-30% vol.) widely 
used in aircraft engines.  

 

GC/MS analysis of a kerosene TR0 sample showing the importance of n-alkanes. 
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The compounds identified in kerosene at the highest levels of concentration are n-alkanes.  
 
The average chemical formula for kerosene (Jet A, Jet A-1, TR0, JP-8) differs from on source to 

another:  
 
C12H23 in Gracia-Salcedo, C.M., Brabbs, T.A., and McBride, B.J., 1988, NASA Tech. Memorandum 101475,  
C11H21 in Edwards, T., and Maurice, L.Q., 2001, J. Propulsion and Power, 17, 461-466,  
C11.6H22 in Martel, C.R., 1988, AFWAL/POSF Report, July 15, 1988 
C11H22 in  Guéret, C., 1989, Thesis, University of Orléans (in French). 
C11H23 in  Nguyen, H.L., and Ying, S.J., 1990, AIAA-90-2439. 
 
For this study, the adopted formula was C11H22.  
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Due to the complexity of the composition of this fuel, it is necessary to use a surrogate model fuel for 
simulating its oxidation.  

 
Under high-pressure JSR conditions, the detailed kinetic modeling of kerosene oxidation was initially 
performed using n-decane as a model-fuel, since n-decane and kerosene showed very similar oxidation 
rates under JSR and premixed flame conditions  as reported in:  

Dagaut et al., Proc. Combust. Inst., 25, pp 919-926, 1994. 
Dagaut et al., J. Chim. Phys. Phys.-Chim. Biol. 92, pp 47-76, 1995. 
Cathonnet et al. RTO Meeting Proc. 14, pp 1-9, 1999.  
Douté et al. Combust. Sci. and Technol. 106, pp 327-344, 1995. 
 
 

n-Decane is an acceptable model-fuel for kerosene oxidation as far as modeling the formation of 
aromatics is not a major issue since the oxidation of n-decane yields much less aromatics that kerosene.  

 
 

Therefore, more complex model fuels are necessary to model the formation of aromatics from the 
oxidation of kerosene as demonstrated in the literature: 
 

Mawid et al., 2002, AIAA 2002-3876. 
Dagaut  2002, Phys. Chem. Chem. Phys., 4, 2079-2094. 
Mawid et al. 2003, AIAA 2003-4938. 
Mawid et al. 2004, AIAA 2004-4207. 
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Surrogate model fuels consisting of n-decane and mixtures of n-decane with simple aromatic 
hydrocarbons and cycloalkanes are tested here, mainly under JSR conditions.  

 
 

The detailed kinetic reaction mechanisms for the pure components of the surrogate model fuel had first 
to be validated before merging the sub-schemes (Ristori et al. 2001, Combust. Sci. and Technol., 65, 
pp 197-228; Dagaut et al. 2002, Fuel, 81, pp 173-184) to yield a kerosene kinetic reaction mechanism  

 
 
 

The study includes: 
New experimental results obtained for the oxidation of kerosene in a JSR, over a wide range of 
equivalence ratio (0.5 to 2), and temperatures in the range 900-1300 K.  

 
The oxidation of n-decane  

under JSR conditions 
shock-tube conditions 
premixed flame conditions,  
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Modeling 
 

For simulating the oxidation of n-decane and kerosene in premixed flames, we used the Premix 
computer code. 
For simulating the ignition delays of kerosene-air mixtures, we used the SENKIN code.  
For the JSR computations, we used the PSR computer code. 
 
The reaction rates are computed from the kinetic reaction mechanism and the rate constants of the 
elementary reactions calculated at the experimental temperature, using the modified Arrhenius 
equation.  

 

 
The reaction mechanism used in this study has a strong hierarchical structure.  

 
 
 

H2-O2 CO2 CH3OH

CH4CO CH2O

C2H6

C2H4

C2H2

C3 >C4

Structure hierarchisee des mecanismes detailles
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The reaction mechanism is based on the comprehensive commercial fuel oxidation mechanism 
developed earlier (Dagaut  2002, Phys. Chem. Chem. Phys., 4, 2079-2094) where the rate expressions 
of pressure dependent reactions have been updated.  

 
 
 

The reaction mechanism used here consisted of 209 species and 1673 reversible reactions.  
 
 
 

The rate constants for reverse reactions were computed from the corresponding forward rate constants 
and the appropriate equilibrium constants,  

 
Kc = kforward / kreverse 

 
calculated using thermochemical data. 
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Results: n-decane 
 

The kinetic model was tested against the atmospheric pressure n-decane premixed flame data of Douté 
et al. to verify the validity of the proposed kinetic scheme in flame conditions. The experimental 
temperature profile reported by the authors was used in the computations.  
 

Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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Oxidation of n-decane in a JSR: the experimental results consisted of the mole fractions of reactants, 
stable intermediates and final products measured at fixed residence time, as a function of T (example: 
700 ppmv of n-decane, 7230 ppmv of O2, in N2; 0.07 s, 1 atm). 
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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Results: Kerosene 
 

 
For the oxidation of kerosene in a JSR, the experimental results consisted of the mole fractions of the 
reactants, stable intermediates and final products measured at fixed residence time, as a function of 
temperature.  
 
They are compared to PSR simulations.  
 
To test the effect of the model fuel composition on the computations, we modeled the oxidation of a 
stoichiometric mixture kerosene/O2/N2 using four different model-fuels: 
 

 
(1) n-decane 
 
(2) n-decane/n-propylbenzene (74% / 26% mole) mixture 
 
(3) n-decane/n-propylcyclohexane (74% / 26% mole) mixture 
 
(4) n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% / 11% mole) mixture 
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n-Decane was used as a model fuel:  

Kerosene oxidation of in a JSR (700 ppmv of kerosene, 11550 ppmv of O2, N2; 0.07 s, 1 atm). 
 
1,3-Cyclopentadiene, benzene, and toluene are strongly underestimated! 
(1) These results confirm the similitude between n-decane and kerosene kinetics of oxidation  
(2) The inclusion of non-paraffin components in the model fuel is necessary to simulate the formation 
of aromatics from kerosene oxidation 
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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n-decane/n-propylbenzene (74% / 26% mole) mixture as model fuel 
 

Kerosene oxidation in a JSR (700 ppmv of kerosene, 11550 ppmv of O2, N2; 0.07 s, 1 atm). 
 
A good agreement between the data and the modeling results for most of the species but 1,3-
cyclopentadiene, benzene, and toluene: benzene and toluene are overestimated 
Thus the inclusion of cycloalkanes in the kerosene model fuel is necessary 
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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n-decane/n-propylcyclohexane (74% / 26% mole) mixture as model fuel 
 

Kerosene oxidation in a JSR (700 ppmv of kerosene, 11550 ppmv of O2, N2; 0.07 s, 1 atm). 
 
A good agreement between the data and the modeling for most of the species but benzene, and toluene 
which are strongly underestimated.  
Expected: The oxidation of n-propylcyclohexane yields little benzene and toluene. 
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% / 11% 
mole) as model fuel: 
 

Kerosene oxidation in a JSR (700 ppmv of kerosene, 11550 ppmv of O2, N2; 0.07 s, 1 atm). 
 
This mixture was more representative of the composition of kerosene: A good agreement between the 
data and the computational results for most of the species, including simple aromatics (benzene, 
toluene). Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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The three-component model fuel 

n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% / 11% mole) 

was selected for modeling the oxidation of kerosene in other experiments 
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% / 11% 
mole) as model fuel: 
 

 
Kerosene oxidation (fuel lean) in a JSR (700 ppmv of kerosene, 23100 ppmv of O2, N2; 0.07 s, 1 atm). 

Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% / 11% 
mole) as model fuel: 
 

 

Kerosene oxidation (fuel rich) in a JSR (700 ppmv of kerosene, 5775 ppmv of O2, N2; 0.07 s, 1 atm). 
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% / 11% 
mole) as model fuel: 
 

Oxidation of kerosene in a JSR at 10 atm and t=0.5 s (initial conditions: 1000 ppmv of kerosene TR0, 
16500 ppmv of O2, diluent nitrogen)  
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% / 11% 
mole) as model fuel: 
 

 

Oxidation of kerosene in a JSR (500 ppmv of kerosene, 8250 ppmv of oxygen, nitrogen diluent; 1.0 s, 
20 atm).  
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% / 11% 
mole) as model fuel: 
 

 
 

 
Oxidation of kerosene in a JSR at 40 atm and t=2.0 s (initial conditions: 250 ppmv of kerosene TR0, 
4125 ppmv of O2, diluent nitrogen)  
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% / 11% 
mole) as model fuel: 
 

 
The oxidation of kerosene in premixed flame (Douté et al.) conditions:1 atm, 0.010739794 g/cm2/s, 
initial mole fractions: 0.0319 of kerosene, 0.28643 of oxygen. 
Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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The ignition delays of few kerosene-air mixtures at atmospheric pressure have been reported before; 
some of them have been used in several previous modeling efforts showing reasonable agreement with 
these data.  
 
 

 
Ignition delay of kerosene/air mixtures at 1 atm 

Ignition delay of kerosene/air mixtures at 20 atm 
Data: Dean et al. 20th ICDERS (2005); 
Starikovskii et al. (2003); Davidson and Hanson, 
6th Int. Conf. on Chemical Kinetics, Gaithersburg, 
MD (2005). 

Dagaut & Cathonnet, PECS 32, 48-92, 2006 
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A kinetic analysis of the reaction paths during the oxidation of the kerosene model-fuel at 10 atm, under 
stoichiometric conditions indicated that the overall oxidation of the fuel is mostly driven by n-decane 
oxidation.  
 
According to the model, at 900 K, the early stages of the fuel oxidation involve the oxidation of n-decane, 
n-propylbenzene, and n-propylcyclohexane.  
 
Hydroxyl radicals are the main species involved in the oxidation of the fuel mixture. The oxidation of n-
decane is responsible for the production of these radicals via a complex reaction scheme that can be 
summarized as follows: 
 

n-C10H22 => 3-C10H21, 4-C10H21, and 5-C10H21 
n-C10H22 => 1-C8H17, 4-C8H17, 2-C8H17, and 3-C8H17 

 
The decyl and octyl radicals isomerize and decompose. Their decomposition yields 1-butyl and 1-propyl 
radicals that in turn decompose.  
 
The further reactions in turn yield OH radicals:  

1-C4H9 +M => C2H5 + C2H4 + M;  
1-C3H7 +M => CH3 + C2H4 + M;  
C2H5 + O2 => C2H4 + HO2;  
2 HO2 => H2O2 + O2;  
H2O2 + M => OH+ OH + M;  
CH3 + HO2 => OH + CH3O.  
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Dagaut & Cathonnet, PECS 32, 48-92, 2006 

C6H5C3H7

C6H5C3H6

C6H5CH2

C6H5CHO

C6H5CO

C6H5

C6H5O

C6H5OH

C6H5C2H3

C6H5CCH2

C6H5C2H

Toluene

COCO2

C6H11C3H7

c-C9H17

c-C6H10

1,3CHD

c-C6H7

C6H6

H

C2H4

n-C10H22

C10H21

C8H17

iC3H5

C3H5O

Acrolein

C2H3CO

-scission
oxidation

1-Olefines:

1-C4H8

C3H6

CH3

C2H3

C2H2

HCO CH2O

OH

HO2

H OH

HO2

H

OH

OH

OH

OH OH

O

OH

O2

HO2

H,OH

H

-H

CH3



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  291 

Synthetic jet fuels 
 

In recent years, research activities on synthetic and bio-derived jet fuels have increased 

significantly in order to reduce dependence of air transportation on oil (petroleum).  
 
 

fossil 

renewable

{ 

 
 
 

*XTL: Gas/Coal/Waste/Renewable to Liquid 
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The Fischer-Tropsch (F-T) process allows the production of a kerosene type fuel from 

synthesis gas also called syngas (CO/H2). Frequently, a synthetic jet fuel is mainly 

composed of n-alkanes, iso-alkanes and cyclo-alkanes, but composition varies from one 

source to another, e.g.:  

    

Source: Egolfopoulos et al. (USC) 
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The very low proportion of aromatic compounds in GtL fuels causes a reduction in emissions 

of soot and unburned hydrocarbons*.  

 

The composition of synthetic jet fuel allows also a decrease in emissions of carbon dioxide 

and soot**.  
 

These fuels are a good alternative to current conventional oil-derived fuels.  

 

 

 

 
 
 
 

* Corporan et al., 2007, Energy & Fuels 21, pp. 2615−2626; Kahandalawa et al., 2008, Energy & Fuels 22, pp. 3673−3679. 

** Rye et al., 2010, Energy & Environmental Science 3, pp. 17−27 
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The kinetics of oxidation of alternative jet fuels and representative surrogates studied in 

a JSR under the same conditions (temperature, 550-1150 K; pressure, 10 bar; equivalence 

ratio, 0.5-2).   

 

To experimentally represent the two synthetic fuels we have designed surrogates 

consisting of few representative species among n-decane, iso-octane, decalin, n-
propylcyclohexane, and n-propylbenzene.  

 

The oxidation of 2 representative mixtures, 100% GtL (C10.45H22.93; H/C=2.20; M=148.28 

g mol-1; CN=56*; density=724 g L-1, from Shell), and 100% CtL (C11.06H21.38, H/C=1.934; 

M=154.12 g mol-1; CN=41*; density=799 g L-1, from Sasol) was performed in a JSR at 10 

atm.  
* ASTM D7668 
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A detailed kinetic reaction mechanism was developed and validated by comparison with 

the experimental results obtained here and previously*.  

 

The model was also evaluated under shock tubes conditions by using data from the 

literature**. 

  
 
 
 
 
 
 

* Mzé Ahmed, A., Dagaut, P., Hadj-Ali, K., Dayma, G., Kick, T., Herbst, J., Kathrotia, T., Braun-Unkhoff, M., Herzler, J., 
Naumann, C., and Riedel, U., 2012, Energy & Fuels, 26(10), pp. 6070-6079.  
Dagaut, P., Karsenty, F., Dayma, G., Diévart, P., Hadj-Ali, K., Mzé-Ahmed, A., Braun-Unkhoff, M., Herzler, J., Kathrotia, T., Kick, 
T., Naumann, C., Riedel, U., and Thomas, L., 2014, Combustion and Flame, 161(3), pp. 835-847  
 
**Wang, H. W., and Oehlschlaeger, M. A., 2012, Fuel, 98(1), pp. 249-258. 



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  296 

MODELING 
 
 
 
 

The CHEMKIN II computer code was used for the kinetic modeling of the oxidation of the 

two fuels studied in a jet-stirred reactor.  

 

 

The chemical kinetic reaction mechanism used contained 2,430 species and 10,962 
reversible reactions.  

 

 

Surrogate model fuels were used for the kinetic modeling  
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MODELING 
 

● The synthetic kerosene GtL was represented by a mixture of 28.1%w n-decane, 30% 2-
methylheptane, 33.1% 3-methylheptane, and 8.8% decalin.  

This corresponds very well with the GtL composition (GtL%/surrogate% in mass: 28.1/28.1, 

63.1/62.8, 8.8/8.8 in mass of n-alkanes, iso-alkanes, and naphthenes, respectively).   

  

 

● The synthetic kerosene CtL was represented by a mixture of 5.7%w n-decane, 11.5% 
iso-octane, 24.8% 3-methylheptane, 16.1% n-propylcyclohexane, 28.3% decalin, 4% n-
propylbenzene, and 9.6% tetralin.  

This corresponds very well with the CtL composition (CtL%/surrogate% in mass: 5.7/5.7, 

36.3/36.3, 16.1/16.1, 28.3/28.3, 4/4, 9.6/9.6 of n-alkanes, iso-alkanes, mono-naphthenes, 

di-naphtenes, mono-aromatics, and naphteno-aromatics, respectively).  
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MODELING  

Sub-models for surrogates components were taken from our previous modeling efforts. n-

Decane, iso-octane, 2-methylheptane and 3-methylheptane studied previously# were used 

to represent the n- and iso-paraffins present in the synthetic fuels. Naphthenes were 

represented by n-propylcyclohexane* and decalin** in the model. Mono-aromatics were 

represented by n-propylbenzene*** and tetralin****represented naphteno-aromatics.  

 

Experimental data obtained in JSR were compared to simulations in order to validate 
the chemical kinetic mechanism developed in this work.  

# Sarathy et al., 2011, Combustion and Flame, 158(12), pp. 2338-2357. 

  Karsenty et al., 2012, Energy & Fuels, 26(8), pp. 4680-4689. 

  Mze-Ahmed et al., 2012, Energy & Fuels, 26(7), pp. 4253-4268. 

* Ristori, A et al., 2001, Combustion Science and Technology, 165(1), pp. 197-228. 

** Dagaut et al., 2013, Proceedings of the Combustion Institute, 34(1), pp. 289-296. 

*** Dagaut et al., 2002, Fuel, 81(2), pp. 173-184. 

**** Dagaut et al., 2013, Energy & Fuels, 27(3), pp. 1576-1585. 
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EXPERIMENTAL RESULTS GTL VS. SURROGATE 
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Concentrations profiles obtained from the oxidation of the GTL and the representative 
mixture in a JSR at 10 bar, τ =0.7 s and φ =1. The initial mole fractions were: xGTL=0.1%, 

xO2=1.6%, xN2=98.3% mole. The GTL data (large symbols) are compared to those for the 

surrogate (lines and small symbols, 650 ppm of n-decane, 375 ppm of iso-octane, and 95 

ppm of decalin). 
Dagaut et al., ICDERS 2015 
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 EXPERIMENTAL RESULTS CTL VS. SURROGATE 
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Concentrations profiles obtained from the oxidation of the CTL and the representative 
mixture in a JSR at 10 bar, τ =0.7 s and φ =1. The initial mole fractions were: xGTL=0.1%, 

xO2=1.5%, xN2=98.4% mole. The CTL data (large symbols) are compared to those for the 

surrogate (lines and small symbols, 163 ppm of n-decane, 365 ppm of iso-octane, 197 ppm 

of n-propylcyclohexane, 317 ppm of decalin, and 175 ppm of n-propylbenzene). 
Dagaut et al., ICDERS 2015 
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 EXPERIMENTAL RESULTS SPK VS. SURROGATE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Very similar experimental profiles obtained for the SPKs and their Surrogates 

 

 Kinetic modeling of the oxidation of these surrogates for model validation
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 SURROGATE OX’n, EXPERIMENTAL VS. MODELING 
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Concentrations profiles obtained from the oxidation of a GTL representative mixture in a 
JSR at 10 bar, τ =0.7 s and φ =1. The data (large symbols) are compared to the modeling 
(lines). 

Dagaut et al., ICDERS 2015 
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MODELING GTL OX’n   

 

Composition of final model fuel to simulate the oxidation of the GtL fuel (C10.45H23.06; 

H/C=2.20; CN= 57.94; 737.7 g mol-1; M=148.46 g mol-1) a 

Component Initial concentrations (ppm) 

n-decane 294 

2-methylheptane 390 

3-methylheptane 431 

decalin 94 

a 1.209C8.64H18.97 since we used 1209 ppm of model fuel to represent 1000 ppm of GtL 
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 GTL OX’n, EXPERIMENTAL VS. MODELING 
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Concentrations profiles obtained from the oxidation of the GTL fuel in a JSR at 10 bar, τ =0.7 
s and φ =1. The data (large symbols) are compared to the modeling (lines). 

Dagaut et al., ICDERS 2015 
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 GTL OX’n, EXPERIMENTAL VS. MODELING 
 

Modeling improvements: 
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Comparison of computed and experimental concentrations profiles obtained from the 
oxidation of the GTL fuel in a JSR at 10 bar, τ =0.7 s and φ=1 (experimental data: large 
symbols; previous model (Dagaut et al., 2015, CNF, 161(3) 835-847): dotted lines; this model: 
continuous lines). 

Dagaut et al., ICDERS 2015 
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MODELING CTL OX’n  

 

Composition of final model fuel to simulate the oxidation of the CtL fuel (C11.06H21.6; 

H/C=1.953; CN= 32.7; 815.7 g mol-1; M=154.32 g mol-1) b 

Component Initial concentrations (ppm) 

n-decane 62 

iso-octane 155 

3-methylheptane 335 

n-propylcyclohexane 197 

decalin 316 

n-propylbenzene 52 

tetralin 112 

b 1.229C9H17.4 since we used 1229 ppm of model fuel to represent 1000 ppm of CtL  
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Dagaut et al., ICDERS 2015 
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 Sensitivity analyses and reaction pathways analyses 
 

  

 

Sensitivity analyses for CO2 at 1030 K 
during the oxidation of the GtL fuel in a 
JSR (φ =1, 10 bar, residence time of 0.7 s 

Sensitivity spectrum for CO2 during the 
oxidation of the CtL fuel in a JSR at φ=1 
and T=1030 K (P = 10 bar and τ = 0.7 s). 

 

These computations show the influence of OH radicals during the oxidation of these fuels. 
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 Sensitivity analyses and reaction pathways analyses 
 

  

  

Contribution of the surrogate components to 
the formation of OH (blue) during the 
oxidation of the GtL fuel in a JSR (φ =1, 830 
K, 10 bar, residence time of 0.7 s). For 
comparison, the concentrations of the 
surrogate components are shown in grey. 

Contribution of the surrogate components 
to the formation of OH (blue) during the 
oxidation of the CtL fuel in a JSR (φ =1, 
830 K, 10 bar, residence time of 0.7 s). 
For comparison, the concentrations of the 
surrogate components are shown in grey 
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Ignition Delay Times 

 

Wang and Oehlschlaeger* measured the ignition delay of a synthetic jet fuel derived from 

natural gas and provided by Shell (C10.40H22.88) in a heated shock tube between 650 and 

1290 K at 20 atm and φ=1.0 (1.286% fuel, 20.74% O2, 77.97% N2). In order to simulate the 

high temperature regime (T > 1000K), they used the surrogate model developed by Naik et 

al.** (n-decane: 61%, n-dodecane: 11%, iso-octane: 28% in mole).  

Their results showed that the data measured by Wang and Oehlschlaeger are similar to the 

model predictions at high temperature.  

We verified the validity of our model for the ignition in shock tube using the experimental 

data* for GtL and the data of Vasu et al.*** for n-dodecane ignition.  

*Wang and Oehlschlaeger, 2012, Fuel 98, pp. 249−258 

**Naik et al., 2011, Comb. Flame 158, pp. 434−445 

***Vasu et al. , 2009, Proc. Combust. Inst. 32, pp. 173-180 
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 Ignition Delay Times in Air 

 

 

 

 

Comparison between ignition delay times 
measurements by Wang and Oehlschlaeger 
(Shell GtL, open symbols) and Vasu et al. 
(n-dodecane, stars), modeling of Naik et al. 
(dotted line), the present modeling results 
for GtL (dashed dotted line) and n-
dodecane predictions (solid line). 

● The computed ignition delays > Naik’s computations.  

Same trends as in the experiments but overestimation of ignition delays (ca. x4 @ 900K). 

● The new computed ignition is in better agreement with the data than previously, but the 

model is too slow.   
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Further studies of synthetic jet fuels oxidation  
 

The very low proportion of aromatic compounds in GtL fuels causes a reduction in emissions 

of soot and unburned hydrocarbons*. The composition of synthetic jet fuel allows also a 

decrease in emissions of carbon dioxide and soot**.  
 

These fuels are a good alternative to current conventional oil-derived fuels.  

 

 

 

 
 
 
 

* Corporan et al., 2007, Energy & Fuels 21, pp. 2615−2626; Kahandalawa et al., 2008, Energy & Fuels 22, pp. 3673−3679. 

** Rye et al., 2010, Energy & Environmental Science 3, pp. 17−27  
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A GtL, a Naphthenic cut (NC) and   a mixture NC/GtL were oxidized in a JSR:  
Properties GtL NC* NC/GtL 

 

Formula C10.45H23.06 C12.64H23.64 C11.54H23.35 

M (g mol-1) 148.44 175.32 161.83 

H/C ratio 2.20 1.87 2.02 

DCN‡ 58.0 39.3 45.8 

Density (g l-1) 737.7 863.1 800.3 

* Naphthenic cut: a representative commercial solvent that fits with typical chemical 
composition of product coming from coal or biomass liquefaction. 
‡ measured by PAC Cetane ID 510, ASTM D7668 
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MODELING 
 
 
A detailed kinetic reaction mechanism was developed and validated by comparison with 

the experimental results obtained here and previously*.  

 

 The CHEMKIN II computer code was used for the kinetic modeling of the oxidation of the 

two fuels studied in a jet-stirred reactor.  

 

The chemical kinetic reaction mechanism used contained 2,384 species and 10,368 
reversible reactions.  

 

* Mzé Ahmed, A., Dagaut, P., Hadj-Ali, K., Dayma, G., Kick, T., Herbst, J., Kathrotia, T., Braun-Unkhoff, M., Herzler, J., 
Naumann, C., and Riedel, U., 2012, Energy & Fuels, 26(10), pp. 6070-6079.  
Dagaut, P., Karsenty, F., Dayma, G., Diévart, P., Hadj-Ali, K., Mzé-Ahmed, A., Braun-Unkhoff, M., Herzler, J., Kathrotia, T., Kick, 
T., Naumann, C., Riedel, U., and Thomas, L., 2014, Combustion and Flame, 161(3), pp. 835-847  
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MODELING 
 

Surrogate model fuels for the kinetic modeling:  

 

The GtL was represented by a mixture of n-decane, 2-methylheptane, 3-methylheptane, 
and decahydronaphthalene (28.1%, 30%, 33.1%, and 8.8% in mass, respectively) which 

corresponds very well with the GtL mass composition (28.1%, 62.8%, 8.8% of n-alkanes, 

iso-alkanes, and naphthenes, respectively). The model fuel matches well the GtL cetane 

number (57.94 vs. 58) and its H/C ratio (2.2 vs. 2.2).  

 

The substitution of the highly branched iso-octane used in a previous model by weakly 

branched iso-alkanes (2-methylheptane and 3-methylheptane) is beneficial, particularly for 

better controlling iso-butene production. 
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MODELING 
 

Surrogate model fuels for the kinetic modeling:  

The naphthenic cut was represented by a mixture of decahydronaphthalene, 
tetrahydronaphthalene, n-propylcyclohexane, 2-methylheptane, and 3-methylheptane 

(27.6%, 23.5%, 10.8%, 12.1%, 25%, and 13% in mass, respectively) which is in line with 

the naphthenic cut composition (89.9% of paraffins and cycloparaffins and 10.1% of 

aromatics in mass).  

(DLR, Stuttgart) 
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MODELING 
 

● Composition of the model-fuel to represent the GtL* fuel in the computations (C10.45H23.06; 

H/C=2.20; DCN= 57.94; M=148.46 g mol-1) ‡ 

Component Initial concentrations (ppm) 

n-decane 294 

2-methylheptane 390 

3-methylheptane 431 

decahydronaphthalene 94 

‡ 1.209C8.64H18.97 since we used 1209 ppm of model fuel to represent 1000 ppm of GtL  

*GtL: 28.1% n-alkanes, 62.8% iso-alkanes, 8.8% cyclo-alkanes, and 0.2% aromatics. The 

composition of the fuels and their molecular weight were determined through gas 

chromatography (http://www.alfa-bird.eu-vri.eu/) 
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MODELING 

●  Composition of the model-fuel to represent the naphthenic cut* in the computations 

(C12.63H23.26; H/C=1.84; DCN= 39.7; M=174.82 g mol-1) ‡ 

Component Initial concentrations (ppm) 

decahydronaphthalene 350 

tetrahydronaphthalene 312 

n-propylcyclohexane 150 

2-methylheptane 384 

3-methylheptane 200 

‡ 1.396 C9.05H16.66 since we used 1396 ppm of model fuel to represent 1000 ppm of NC 

*NC: 4.7% paraffins, 85.2% cyclo-paraffins, 9.6% monoaromatics and 0.5% polyaromatics. 

The composition of the fuels and their molecular weight were determined through gas 

chromatography (http://www.alfa-bird.eu-vri.eu/) 
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 MODELING  

 

● Composition of the model-fuel representing the GtL/naphthenic cut mix (C11.54H23.09; 

H/C=2.0; DCN= 48.8; M=161.57 g mol-1)‡ in the simulations 

Component Initial concentrations (ppm) 

n-decane 147 

decahydronaphthalene 222 

tetrahydronaphthalene 156 

2-methylheptane 387 

3-methylheptane 316 

n-propylcyclohexane 75 

‡ 1.3024 C8.86H17.73 since we used 1302.4 ppm of model fuel to represent 1000 ppm of 

GtL/naphthenic cut mixture.
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 MODELING  

Sub-models for surrogates components were taken from our previous modeling efforts. n-

Decane, 2-methylheptane and 3-methylheptane studied previously‡ were used to represent 

the n- and iso-paraffins present in the synthetic fuels. Naphthenes were represented by n-

propylcyclohexane* and decahydronaphthalene ** in the model. Tetrahydronaphthalene 

***represented naphtheno-aromatics.  

 

Experimental data obtained in JSR were compared to simulations in order to validate 
the chemical kinetic mechanism.  

  
‡ Sarathy et al., 2011, Combustion and Flame, 158(12), pp. 2338-2357. 
  Karsenty et al., 2012, Energy & Fuels, 26(8), pp. 4680-4689. 
  Mze-Ahmed et al., 2012, Energy & Fuels, 26(7), pp. 4253-4268. 
* Ristori, A et al., 2001, Combustion Science and Technology, 165(1), pp. 197-228. 
** Dagaut et al., 2013, Proceedings of the Combustion Institute, 34(1), pp. 289-296. 
*** Dagaut et al., 2013, Energy & Fuels, 27(3), pp. 1576-1585. 
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RESULTS AND DISCUSSION 
The data showed three regimes of oxidation: the cool flame regime (T < ~750 K), the 

negative temperature coefficient (~640-750 K) and the high-temperature regime (>750 K).  
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RESULTS AND DISCUSSION: GTL OX’n, EXPERIMENTAL VS. MODELING 
 
 
 
 
 
 
 
 

 
 

Comparison of experimental and computed concentrations profiles obtained from the 
oxidation of 1000 ppm of the GtL fuel with 16215 ppm of O2 in a JSR at 10 bar, τ =1 s and 
φ=1 (experimental data: large symbols; computations: lines; dilution by N2). 
P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433–440 (2017) 
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RESULTS AND DISCUSSION: NC OX’n, EXPERIMENTAL VS. MODELING 
 
 
 
 
 
 
 
 

 
 

Comparison of computed and experimental concentrations profiles obtained from the 
oxidation of 1000 ppm of the naphtenic cut with 18570 ppm of O2 in a JSR at 10 bar, τ =1 s 
and φ=1 (experimental data: large symbols; computations: lines; dilution by N2). 
P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433–440 (2017) 
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RESULTS AND DISCUSSION: NC/GTL OX’n, EXPERIMENTAL VS. MODELING 
 
 
 
 
 
 
 
 

 
 

Comparison of computed and experimental concentrations profiles obtained from the 
oxidation of 1000 ppm of the naphtenic cut/GtL fuel mixture with 17378 ppm of O2 in a JSR 
at 10 bar, τ =1 s and φ=1 (data: large symbols; computations: lines; dilution by N2). 
P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433–440 (2017) 
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RESULTS AND DISCUSSION: NC/GTL OX’n, MODELING 
 
 
 
 
 
 
 

 

 
(5)  C2H3 + O2  CH2HCO + O      
(6)  C2H3 + O2  CH2O + HCO  
(47) H + O2  O + OH  
(55)  H + O2( + M)  HO2 (+ M)  
(60)  HO2 + OH  H2O + O2 
(73)  CO + OH  CO2 + H  
(74)  CO + OH  CO2 + H  
(128)  CH3 + HO2  CH4 + O2  
(138)  CH3 + HO2  CH3O + OH  
(267)  C2H4 + OH  C2H3 + H2O  
(659)  a-C3H5 + HO2  C3H5O + OH 

 

Sensitivity analyses for CO2 at 1040 K during the oxidation of 1000 ppm of the naphthenic 

cut/GtL fuel mixture in a JSR (φ =1, 10 bar, residence time of 1 s).  

P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433–440 (2017) 
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RESULTS AND DISCUSSION: NC/GTL OX’n, MODELING 
 

 
(64) H2O2 + OH  H2O + HO2 
(138) CH3 + HO2  CH3O + OH  
(218) CH3O2H (+ M)  CH3O + OH (+ M) 
(356) CH2HCO + O2  CH2O + CO + OH 
(578) C3H6OOH1-2  C3H6O + OH 
(657) C3H61OH2OO  CH3HCO + CH2O + OH 
(659) aC3H5 + HO2  C3H5O + OH 
(1343) C4H81OOH3J  C4H8CY1O3 + OH 
(3368) C5H5 + HO2  C5H5O + OH 
(85) CH2O + OH  HCO + H2O 
(417) CH3HCO + OH  CH3CO + H2O 
(653) C3H6 + OH  C3H61OH 
(992) C4H8 + OH  C4H7-1 + H2O 
(2677-2680) n-C10H22 + OH  H2O + RC10H21  
(3747) prCHX + OH  RprCHX + H2O 
(8454) OH + decalin  H2O + Rdecalin 
(8628) OH + tetralin  H2O + Rtetralin  
(8796-8800) C8H18-3 + OH  C8H17-R + H2O 
(9685-9691) C8H18-2 + OH  C8H17-R + H2O 

Consumption/Production of OH at 790 K during the oxidation of 1000 ppm of the 
naphtenic cut/GtL fuel mixture in a JSR (φ =1, 10 bar, residence time of 1 s). 
P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433–440 (2017) 
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5.4 Biofuels 
5.4.1 RME (biodiesel) 
 
Several vegetable oils have also been tested for transport purpose, but their high viscosity, low 

volatility, and low cetane number (>40) leaded to incomplete combustion. Therefore, the concept of 

using bio-diesel, consisting of alkyl esters of these vegetable oils obtained by transesterification with 

an alcohol (mostly methanol, but also ethanol)  

 
  

CH2-O-C(O)-R1

CH2-O-C(O)-R2

CH2-O-C(O)-R3

+ 3 CH3OH

R1-C(O)O-CH3

R2-C(O)O-CH3

R3-C(O)O-CH3

+ Glycerol
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Vegetable oil composition 
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Early modeling efforts 

To model combustion of fuels, to predict accurate combustion performance and emission 

characteristics, a good knowledge of their kinetics of combustion is essential. Since rapeseed is one 

of the main crop growing Europe, we focus our study on the kinetic of rapeseed oil methyl ester 

(RME) oxidation.  

RME is a complex mixture of C14, C16, C18, C20, and C22 esters with highly saturated carbon chain. The 

composition of the fuel was 0.1% C14, 5.4% C16, 92.0% C18, 2.0% C20, and 0.5% C22, with mostly one 

double bond on the acid chain. The equation for the oxidation of RME can be written as follows:  

C17.92H33O2 + 25.17 O2 = 17.92 CO2 + 16.5 H2O. 

Because of the complexity of this fuel, it is difficult to propose a detailed kinetic scheme for its 

oxidation, although that could be achieved building on previous kinetics studies involving simpler 

esters  
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The oxidation of RME in a JSR at 1 atm (φ = 1, 0.07 s). The data (large symbols) are compared to the 

computations (lines, small symbols), n-hexadecane as surrogate model-fuel, initial mole fractions: n-

hexadecane, 0.0005625; oxygen, 0.011; nitrogen, 0.9884375).  

P. Dagaut et al., Proc. Combust. Inst. 31, 2955–2961 (2007) 
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The oxidation of RME in a JSR at 10 atm (φ = 1, 1 s). The data (large symbols) are compared to the 

computations (lines, small symbols), n-hexadecane as surrogate model-fuel, initial mole fractions: n-

hexadecane, 0.0005625; oxygen, 0.012585; nitrogen, 0.9868525).  

P. Dagaut et al., Proc. Combust. Inst. 31, 2955–2961 (2007) 
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5.4.2 B30 
 

Diesel engines contribute significantly to overall carbon dioxide emissions whereas concerns about 

green-house effect and air pollution favor the investigation of sustainable and environment-friendly 

Diesel fuels.  

 

Biofuels such as fatty acid methyl esters (FAME) are mixed in variable quantities (e.g. B5 contains 5% 

in volume of FAME and B30 contains 5% in volume of FAME) with fossil Diesel fuel. 
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Introduction  

 

Reduction of engines emissions in terms of carbon oxides and polyaromatic hydrocarbons (PAH) 

have been reported, indicating bio-diesel may help preserving our environment. 

 

Reduction of carbon footprint in Europe by increased biodiesel fraction (EU 2010: 5.75% energy HV) 
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Introduction  (cont’d)  

 

The so-called bio-Diesel is a mixture of FAME produced from transesterification of triglycerides (oils) 

with methanol. Current biodiesel fuels are mixtures of ca. C12-C22 highly saturated carbon-chain esters. 

Their complex composition implies the use of surrogate model-fuels for simulating their combustion 

kinetics.  

 

Whereas early kinetic studies have demonstrated a strong similitude between the oxidation of rapeseed 

oil methyl esters (RME) and that of n-hexadecane, long-chain methyl esters exhibiting cool-flames were 

also proposed as bio-Diesel model fuels.  
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Introduction  (cont’d)  

A fossil Diesel fuel consists of an even more complex mixture of thousands of medium-high molecular 

weight hydrocarbons that participate in thousands of pyrolysis and oxidation reactions. Therefore, 

surrogates are needed to represent Diesel fuel with a limited number of components.   

 

In Europe, the 'IDEA' surrogate Diesel fuel (70% n-decane + 30% 1-methyl naphthalene) was 

formulated previously as part of the ‘Integrated Development on Engine Action’ (IDEA) program.  

This fuel mixture matches both the physicochemical properties and combustion behavior of a 

conventional Diesel fuel. The IDEA fuel has properties similar to those of a conventional Diesel fuel, 

i.e. a normal density of 0.798 g/L at 20°C, a CN of ca. 53, and a hydrogen-to-carbon ratio of 1.8.  
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Introduction   (cont’d) 

 

The kinetics of oxidation of a commercial B30 bio-Diesel fuel and a B30 surrogate bio-Diesel fuel 

were measured and compared.  

The experiments were performed in a jet-stirred reactor (JSR), in order to:  

(1) provide new information on the kinetic of oxidation of a B30 bio-Diesel fuel over a wide range of 

conditions,  

(2) verify the chemical kinetics of oxidation of a simple B30 surrogate can represent that of a 

commercial B30 Diesel fuel, and  

(3) propose and validate a detailed kinetic reaction mechanism for the oxidation of a B30 bio-Diesel 

fuel from low to high temperatures. 
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Experimental conditions in the JSR (10300 ppm of C, 560-1030 K, t=0.6 & 1s) 

Initial concentrations (in ppm for the fuel, in mole fraction for O2 and N2) ϕ P/ atm

B30 n-C10H22 C11H10 C9H18O2 O2 

600 - - - 0.0574 0.25 10 

600 - - - 0.0287 0.5 10 

600 - - - 0.0144 1 10 

600 - - - 0.0096 1.5 10 

- 490 210 300 0.0597 0.25 10 

- 490 210 300 0.0284 0.5 6, 10 

- 490 210 300 0.0142 1 6, 10 

- 490 210 300 0.0095 1.5 10 

 

B30 bio-Diesel fuel surrogate: 49% n-decane, 21% 1-methyl naphthalene, and 30% methyl octanoate 

in mole, i.e. C10.3H18.4O2 

Commercial low-S B30 bio-Diesel fuel (CN 54.8, 84.1% C, 12.9% H, and 3% O by wt., d= 845 g/L at 

15°C, FAME fraction was rapeseed oil methyl ester): C16.47H30.83O0.5 
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Modeling 

The computations were performed using the PSR computer code.  

The detailed kinetic reaction mechanism is based on previous studies of the oxidation of methyl 

octanoate, large alkanes, 1-methylnaphtalene and diesel + IDEA surrogate [H.P. Ramirez L, K. Hadj-Ali, P. 

Diévart, G. Moréac, P. Dagaut, Energy Fuels 24(3) (2010) 1668-1676] where cross-reactions between the main fuel 

components were considered: metathesis of n-decane with phenyl, benzyl, 1-naphtylmethyl, 1-naphtyl, 

and indenyl radicals; reactions of decyl radicals with 1-naphtaldehyde; reactions of ●C10H21O2 with 

toluene, 1-methylnaphtalene, 1-naphtylmethyl, 1-naphtaldehyde, benzyl, phenyl, and 1-naphtyl.  

 

The proposed kinetic scheme (7748 reversible reactions and 1964 species) represents the 1st attempt 

to propose a kinetic scheme for the oxidation of Diesel-biodiesel fuel mixtures.  
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Experiment results 

● Oxidation of a B30 bio-Diesel fuel surrogate, 49% n-decane, 21% 1-methyl naphthalene, and 30% 

methyl octanoate in mole   

● Oxidation of a commercial low-sulfur B30 bio-Diesel fuel   

 

They were studied in a jet-stirred reactor over a wide range of conditions: ϕ=0.25-1.5; temperature in 

the range 560–1030 K, mean residence time constant: 0.6 s at 6atm and to 1 s at 10atm.  

This allowed the observation of the cool-flame oxidation regime, the negative temperature coefficient 

(NTC) regime, and the high-temperature oxidation regime.   
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Experiment results (cont’d) 

More than 20 species were identified and measured by FTIR, CG-MS/FID/TCD. Experimental 

concentration profiles were obtained for H2, H2O, O2, CO, CO2, CH2O, CH4, C2H6, C2H4, C2H2, 

formaldehyde, acetaldehyde, C3H6, 1-C4H8, 1,3-C4H6, 1-C5H10, 1-C6H12, 1-C8H16, n-decane, methyl 

octanoate, and 1-methylnaphthalene. Other minor species detected at ppm levels were not quantified 

nor used in the modeling.  

 

The concentration profiles measured from the oxidation of the commercial B30 and the B30 surrogate 

over the low-, intermediate-, and high-temperature oxidation regimes were compared:  
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Experiment results (cont’d) 

 

Experimental concentration profiles from the oxidation of a commercial Diesel fuel (filled symbols), the 
B30 fuel (grey symbols), the ) in a JSR at 10 atm, ϕ=0.25, and τ= 1s.  

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375–382 (2011) 

 

The concentration profiles obtained for CO, CO2, H2O, and O2 during the oxidation of the 2 biofuels 

are very similar over the entire range of experimental conditions; the commercial Diesel fuel used in 

the B30 mixture reacts similarly. 
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Modeling results 
 

The concentration profiles obtained for the oxidation of the B30 surrogate fuel were compared to the 

model predictions.  

 

The present model was also successfully tested for the oxidation of pure n-decane, pure methyl 

octanoate, and pure 1-methylnaphtalene under similar JSR conditions.  

 

Furthermore, the proposed model, not including the methyl octanoate chemistry, was used to simulate 

the oxidation of commercial and surrogate Diesel fuels [H.P. Ramirez L, K. Hadj-Ali, P. Diévart, G. Moréac, P. Dagaut, 

Energy Fuels 24(3) (2010) 1668-1676]   
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Modeling results (cont’d)    Results at 6 atm 

 

  

The B30 surrogate Diesel fuel oxidation in a JSR at 6 atm, τ= 0.6s, and ϕ= 0.5. The experimental data 
(large symbols) are compared to the computations (lines with small symbols). 

 

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl naphthalene + 300ppm of methyl octanoate 

 

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375–382 (2011) 
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Modeling results (cont’d)    Results at 6 atm 

   

  

 

 

The B30 surrogate Diesel fuel oxidation in a JSR at 6 atm, τ= 0.6s, 

and ϕ= 1. The experimental data (large symbols) are compared to 

the computations (lines with small symbols). 

 

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl 
naphthalene + 300ppm of methyl octanoate 

 

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375–382 (2011) 
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Modeling results (cont’d)    Results at 10 atm 

 

The B30 surrogate Diesel fuel oxidation in a JSR at 10 atm, τ= 1s, and ϕ= 0.5. The experimental data 
(large symbols) are compared to the computations (lines with small symbols). 

 

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl naphthalene + 300ppm of methyl octanoate 

 

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375–382 (2011) 
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Modeling results (cont’d)    Results at 10 atm 

 

  

The B30 surrogate Diesel fuel oxidation in a JSR at 10 atm, τ= 1s, and ϕ= 1. The experimental data 
(large symbols) are compared to the computations (lines with small symbols). 

 

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl naphthalene + 300ppm of methyl octanoate 

 

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375–382 (2011) 
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Modeling results (cont’d)    Results at 10 atm 

 

  

 The B30 surrogate Diesel fuel oxidation in a JSR at 10 atm, τ= 1s, and ϕ= 1.5. The experimental data 
(large symbols) are compared to the computations (lines with small symbols). 

 

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl naphthalene + 300ppm of methyl octanoate 

 

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375–382 (2011) 
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Modeling results (cont’d)   

 
Rxn pathways analysis for B30 surrogate oxidation (10 atm, φ=1, 1030K) 

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375–382 (2011) 
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Modeling results (cont’d) 
 

According to the present computations, at 620 K and in fuel-lean conditions (ϕ=0.5 at 10 atm), OH 

radicals are mostly responsible for the oxidation of n-decane (ca. 95%), methyl octanoate (ca. 89%), 

and 1-methylnaphtalene (ca. 80%) via  

n-C10H22 + OH = C10H21 + H2O 

C9H18O2 + OH = C9H17O2 + H2O 

C10H7CH3 + OH = C10H7CH2 + H2O 

Under these conditions, their formation mainly occurs via the decomposition of alkylhydroperoxy 

(O2QOOH and OQ'OOH) deriving from the oxidation of n-decane and methyloctanoate.  
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Modeling results (cont’d) 

Above ca. 750 K, the transition to the high-temperature oxidation regime occurs. The fuel is rapidly 

consumed through metathesis reactions with OH and larger amounts of products are formed.  

 

The model predicts the experimentally observed overall reactivity of the fuel and products' formation, 

although it tends to underestimate the overall rate of oxidation above ca. 800 K. This behavior results 

from the too strong inhibiting effect of 1-methylnaphtalene on n-decane and methyl octanoate oxidation.   

We did not attempt to improve the present simulations by modifying the kinetic parameters used in 

previous modeling efforts in order to keep this model valid for representing the neat oxidation of the 

surrogate fuel components, i.e. n-decane, 1-methylnaphtalene, and methyl octanoate.  



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  351 

Modeling results (cont’d) 

 

At 1040 K, OH radicals are still mostly responsible for the oxidation of n-decane (ca. 80%), methyl 

octanoate (ca. 80%), and 1-methylnaphtalene (ca. 89%) via the same reactions.  

The reactions of n-decane with O (ca. 10%) and H (ca. 5%) also contribute to its consumption.  

Also, methyl octanoate reacts with H (ca. 8%). Similarly, H-atoms also consume 1-methylnaphtalene 

(ca. 8%).  

 

Under these conditions, the production of ethylene mainly occurs via β-scissions of alkyl radicals (1-

butyl and 1-propyl 30%) whereas the oxidation of ethyl radicals by O2 also contributes to ethylene 

formation (20%).  



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  352 

Modeling results (cont’d)  Local, first-order sensitivity analyses  

 

Sensitivity analyses showed that at 620K, besides the C0-C2 reactions, the overall reactivity is positively 

sensitive to the rates of oxidation of n-decane by OH, and the peroxidation of methyl octanoate radicals, 

i.e. to reactions  

CH3(CH2)5CH(●)C(=O)OCH3 +O2 <=> CH3(CH2)5CH(OO●)C(=O)OCH3 

CH3CH2CH2CH2CH2CH2CH(OO●)C(=O)OCH3 <=> CH3CH2CH2CH2CH(●)CH2CH(OOH)C(=O)OCH3 

As expected, at 1040K, the system is mostly sensitive to the kinetics of the C0-C1 sub-scheme, i.e. 

H+O2 <=> OH+O 

HO2+OH <=> H2O+O2 

CO+OH <=> CO2+H 
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5.4.3-Pentanol 
 
Because they are renewable, biofuels are attracting great interest as transportation fuels. They can be 

locally produced, may be less polluting, sometimes more biodegradable, and could reduce net 

greenhouse gas emissions [1].  

Ethanol accounts for over 90% of all biofuels' production worldwide [2]. However, mixing stability 

issues may appear with simple alcohols whereas larger alcohols would mix better with petrol-derived 

fuels thanks to their longer alkyl carbon chain.  

Since 1-butanol was announced to be sold soon as a gasoline blending constituent [3], Dagaut and 

Togbé studied the oxidation of butanol-gasoline surrogate mixtures (85-15 vol%) in a JSR at 10 atm 

and a kinetic reaction mechanism was derived for modeling the oxidation of butanol-gasoline 

surrogate mixtures [4].  

 
1. A. Demirbas, Prog. Energy Combust. Sci. 33 (1) (2007) 1-18. 
2. IEA World Energy Outlook (2006), ISBN 92-64-10989-7, 500p. 
3. Dupont Corp. (2006) available at 
 http://www2.dupont.com/Biofuels/en_US/facts/BiobutanolFactsheet.html 
4. P. Dagaut and C. Togbé, Energy and Fuels 22 (2008) 3499–3505. 
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1-Pentanol is among the longer carbon-chain alcohols that could be blended with conventional fuels. 

However, so far, it received little attention since only engine experiments were reported in the 

literature [5,6] whereas bio-pentanol could be produced [7,8]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
5. M. Gautam, D.W. Martin, Proc Instn Mech Engrs Part A 214 (2000) 165-182. 
6. M. Gautam, D.W. Martin, D. Carder, Proc Instn Mech Engrs Part A 214 (2000)  497-511. 
7. A. F. Cann, J.C. Liao, Appl. Microbiol. Biotechnol. 85 (2010) 893-899. 
8. K. Zhang, M.R. Sawaya, D.S. Eisenberg, J.C. Liao, Proc. Natl. Acad. Sci. USA 105 (2008) 20653-
20658.  
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Experimental (large symbols) and computed (lines and small symbols) concentration profiles obtained 
from the oxidation of 1-pentanol in a JSR at φ = 0.35, P = 10 atm, τ = 0.7s.  
C. Togbé et al., Proc. Combust. Inst. 33(1), 367–374 (2011)   
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Experimental (large symbols) and computed (lines and small symbols) concentration profiles obtained 
from the oxidation of 1-pentanol in a JSR at φ = 0.5, P = 10 atm, τ = 0.7s. 
C. Togbé et al., Proc. Combust. Inst. 33(1), 367–374 (2011)   
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Experimental (large symbols) and computed (lines and small symbols) concentration profiles obtained 
from the oxidation of 1-pentanol in a JSR at φ = 1, P = 10 atm, τ = 0.7s. 
C. Togbé et al., Proc. Combust. Inst. 33(1), 367–374 (2011)  
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Experimental (large symbols) and computed (lines and small symbols) concentration profiles obtained 
from the oxidation of 1-pentanol in a JSR at φ = 2, P = 10 atm, τ = 0.7s. 
C. Togbé et al., Proc. Combust. Inst. 33(1), 367–374 (2011) 
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Reaction paths from the kinetic modeling of 1-pentanol oxidation in a JSR at 10 atm. 
C. Togbé et al., Proc. Combust. Inst. 33(1), 367–374 (2011) 
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Laminar burning velocities of 1-pentanol/air mixtures at T=423 K and 1 atm (a) and burnt gases 
Markstein lengths (b).  
 
C. Togbé et al., Proc. Combust. Inst. 33(1), 367–374 (2011) 
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5.4.4  2-Butanone 
 

Methyl Ethyl Ketone (MEK) is a four carbon linear ketone that can be produced through either 

chemical and biological conversion of furfural [1] or oxidation of 2-butanol. Besides its potential 

application as a fuel substitute [2], MEK is also used as solvent in the paint and adhesive industry. 

With these considerations, and since MEK is the smallest ketone exhibiting secondary C-H bonds, this 

fuel is a molecule of choice to investigate the specificities of keto groups oxidation. 

 

 

 

[1] E.R. Sacia, M. Balakrishnan, M.H. Deaner, K.A. Goulas, F.D. Toste, A.T. Bell, ChemSusChem, 8 
(10)(2015) 1726-1736. 
[2] F. Hoppe, U. Burke, M. Thewes, A. Heufer, F. Kremer, S. Pischinger, Fuel, 167 (2016) 106-117. 
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Comparison between experimental (symbols) and computed (Solid line: this work, dashed line: Serinyel et al. [10]) 
concentration profiles for the oxidation of MEK at 10 atm at different equivalence ratios.   
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Rate of production analysis 
 

 

Rate of production analyses of MEK oxidation at 950K, φ=1 and 10 atm. Blue values: This work, black 
italic values: Serinyel et al. . 
S. Thion, Proc. Combust. Inst. 36, 459–467 (2017) 
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Pyrolysis and high temperature oxidation  
 

 

 

Species concentration profiles for the pyrolysis of 1% MEK in argon at an average pressure of 1.5 atm 
(solid line: experiments by Lam et al., dashed line: this work.) 
S. Thion, Proc. Combust. Inst. 36, 459–467 (2017) 
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Ignition delay times of MEK/O2/Ar mixtures.  Solid line: this work, dashed line: Serinyel et al. 
S. Thion, Proc. Combust. Inst. 36, 459–467 (2017) 
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Laminar burning velocities of MEK in air. Dashed line: Serinyel et al., solid line: this work. 
S. Thion, Proc. Combust. Inst. 36, 459–467 (2017) 
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5.4.5 ML and DEE  
 

 
● Among proposed chemical platforms, levulinic acid is one of the most interesting  

 

Alkyl levulinates produced from levulinic acid esterification contain keto and ester functional 

groups.The synthesis of these compounds starts with hemicellulose and cellulose hydrolysis to xylose 

and glucose, respectively. They can be converted to furfural and 5-hydroxymethylfurfural which in turn 

can be converted to levulinic acid.  

Methyl levulinate (DCN ≈7.8) is considered here. 

 

● Another interesting biofuels, produced via dehydration of bio-ethanol, is diethyl ether 
suitable for C.I. engines (CN >125). 
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MODELING 
The CHEMKIN II computer code was used for the kinetic modeling of the oxidation of the 

two fuels studied in a jet-stirred reactor.  

 

The chemical kinetic reaction mechanism for ML oxidation contained 704 species involved 
in 3870 reversible reactions; that for DEE oxidation contained 471 species involved in 
2861 reversible reactions*. 

 

Core mechanism: C0-C3 oxidation mechanism extended to model the oxidation of other 

oxygenates [a] 

 

 

[a] S. Thion et al., Combust. Flame 185 (2017) 4-15; A.M. Zaras et al., Energy & Fuels 31 (6) (2017) 6194-6205. 

* sub-mec included in DBE oxidation mechanism. 
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MODELING: ML Oxidation 
 

 

 

We previously reported computed rate constants for H-abstractions by OH, H and CH3 on 

ML [a].  

 

H-abstraction reactions by other radicals were not found to be sensitive, and simple 

analogies were applied with no specific corrections for k(T).  

 

 

 

 [a] S. Thion, A.M. Zaras, M. Szori, P. Dagaut, Phys. Chem. Chem. Phys. 17 (36) (2015) 23384-23391 
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MODELING: ML Oxidation  

 

Additional theoretical calculations using the same computational strategy were performed in 

order to elucidate the decomposition pathways of ML and to obtain missing thermochemical 

properties.  

 

These calculations were carried out using the Gaussian09 code [a] at the G3//MP2/aug-cc-

pVDZ and G3B3 levels of theory. 

 

 

 

 

 [a] M.J. Frisch et al., Gaussian 09, Revision D.01; Wallingford CT, 2009 
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MODELING: ML Oxidation 

The presence of oxygenated groups, and in particular of the ester group, favors molecular 

reactions. Ethyl (and larger) esters can easily decompose by H–transfer to produce an acid 

and an olefin. This type of reaction cannot take place here because a carbon chain is 

needed on the alcohol side, while methyl levulinate has only one carbon. Therefore, other 

possible pathways for the molecular reaction decomposition of methyl levulinate were 

explored by theoretical chemistry methods and a reaction similar to that of esters has been 

identified. It involves a complex TS: 

 

Structure of the transition state during the molecular reaction yielding methanol and 5-methyl-2(3H)-

furanone from ML. 
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MODELING: ML Oxidation 

 

The high-pressure limit rate constant was computed at the G3B3 and G3//MP2/aug-cc-

pVDZ levels of theory by following the strategy described in our previous work. We 

assumed hindered rotors cancel out, as in the work of Al Abbad et al.[a].  

 

This molecular reaction is much slower than that observed in the case of esters: Its rate 

constant is 100 times lower at 1500 K and almost 200 times at 1000 K.  

 

However, its low activation barrier allows it to play an important role.  

 

 

[a] M. Al Abbad, B.R. Giri, M. Szori, A. Farooq, Proc. Combust. Inst. 36 (1) (2017) 187-193. 
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MODELING: ML Oxidation 

 

A second reaction has also been identified. It involves another interaction between the two 

oxygenated groups in ML. It consists of a H–transfer from the C–"5" to the oxygen atom in 

C=O of the ester group. This transfer is accompanied by cyclization between the oxygen 

atom of the ketone group and C–“1” and the formation of a C=C double bond to give 2-

methylene-5-methoxy-5-hydroxy-tetrahydrofuran ("oxyTHF"): 

 

Formation of 2-methylene-5-methoxy-5-hydroxy-tetrahydrofuran. 

The rate constant for this reaction was calculated with G3B3 and G3//MP2/aug-cc-pVDZ 

levels of theory.  
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MODELING: ML Oxidation 

 

The α-angelica lactone is likely to undergo a molecular decomposition reaction similar to 

that of cyclopentanone yielding methyl vinyl ketone and CO: 

 

 

Molecular decomposition of α-angelica lactone. 

 

The rate constant for this reaction was calculated using the G3B3 method and the transition 

state theory. 
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RESULTS: ML Oxidation 

 

12 intermediate stable species were identified and quantified in addition to the reactants 

(O2, ML) and the final products (H2O, CO2). 

 

No reactivity below 750K 
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RESULTS: ML Oxidation 

 

 
φ = 0.5          φ = 1.0         φ = 2.0 
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RESULTS: ML Oxidation 

 
φ = 0.5           φ = 1.0          φ = 2.0 
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RESULTS: ML Oxidation  

 

 

Consumption of ML and production of methanol during the oxidation of ML in a JSR. 
 

Methanol production starts at the same temperature as fuel consumption (around 850 K) 
and in the same proportions for the 3 equivalence ratios.  

Differences are observed ~1000 K, when the consumption of methanol > formation. These 
experimental observations indicate that a large fraction of the fuel is consumed by 
molecular reactions yielding methanol. 
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RESULTS: ML Oxidation 
 

 

Normalized rates of reaction analysis at φ= 1, 1 atm and 1000 K corresponding to ~ 50% of 
fuel consumption. Values are also given at φ = 0.5 (italics) and 2 (bold) for the primary 
reactions. Bold species are measured and italic species are detected in trace amounts. 
Proc. Combust. Inst. 37 (1), 381–388 (2019)   
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MODELING: DEE Oxidation 

● Beta-scission reactions of fuel radicals and QOOH radicals are adopted from the CBS-
QB3 calculations of Sakai et al. [a], and from our previous calculations on DBE [b].  

 

● Other reactions related to low-temperature chemistry are taken analogous to our previous 
DBE study [b].  

 

● Unimolecular decomposition reactions of DEE were taken from the study of Yasunaga et 
al. [c].  

 

● Thermochemistry of the fuel, fuel radical as well as all related low-temperature species 
were taken from the theoretical study of Sakai et al. [a], and for other species these were 
calculated using using the group additivity method of Benson [d]. 

 
[a] Y. Sakai et al. Proceedings of the Combustion Institute 36 (2017) 195–202.  
[b] S. Thion et al. Combustion and Flame 185 (2017) 4-15. 
[c] K. Yasunaga et al. Journal of Physical Chemistry A 114 (2010) 9098-9109. 
[d] S.W. Benson, Thermochemical Kinetics, Wiley, New York, 1976. 
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RESULTS: DEE Oxidation 

 

1 atm 10 atm 

 
 

DEE mole fraction evolution as a function of temperature; lines represent simulations. 
Z. Serinyel et al., Combust. Flame 193, 453–462 (2018) 
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RESULTS: DEE Oxidation 

 

 Mole fraction for the φ = 0.5 experiment at 1 atm, initial mole fraction of DEE: 1000 ppm, t = 0.07s. 
Z. Serinyel et al., Combust. Flame 193, 453–462 (2018) 
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RESULTS: DEE Oxidation 

 

DEE oxidation φ = 0.5 experiment at 10 atm, t = 0.7s. 
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RESULTS: DEE Oxidation 
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RESULTS: DEE Oxidation 

 

Shock tube and RCM ignition (a) 1% DEE in Ar, p = 1 atm; (b) 0.698% DEE in Ar, φ = 1, p = 10–12 bar; 
(c) DEE in air, φ= 1, RCM by Werler et al. 2015 
Z. Serinyel et al., Combust. Flame 193, 453–462 (2018) 
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RESULTS: DEE Oxidation  

 

Laminar flame speed of DEE/air mixtures [a] as a function of φ at 1 atm, Tu = 298 and 398 K.  
Z. Serinyel et al., Combust. Flame 193, 453–462 (2018) 

 

[a] F. Gillespie et al. Energy 43 (2012) 140-145. 

  

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

10

20

30

40

50

60

70

 

 298 K
 398 K

La
m

in
ar

 fl
am

e 
sp

ee
d 

(c
m

/s
)

Equivalence ratio

(a)



                             Combustion Institute Summer School, Tsinghua-Princeton June 2025  387 

Further investigations of DEE cool-flame  

 
Reaction paths for the oxidation of DEE at 530 K using the kinetic mechanism of Tran et al. [Proc. Combust. Inst. 37 (1) (2019) 
511-519]. Species in boxes were detected in the present study. Thick arrows indicate major reaction routes. 
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Further investigations of DEE cool-flame  
 

 
 

 

Oxidation of 5000 ppm of diethyl ether in a JSR at 10 bar. Experimental results (symbols) and computations (lines) 
are presented. Combust. Flame 228, 340-350 (2021) https://doi.org/10.1016/j.combustflame.2021.02.007 
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Further investigations of DEE cool-flame: ROOH and diols  

  

Mass spectrum showing the formation of C4H10DO3+ (m/z 

108.0764) and C4H9D2O3+ (m/z 109.0827) after H/D diols-

hydroperoxides exchange with D2O. Analyses were performed 

in FIA/APCI (+). No signal for C4H10DO3+ and C4H9D2O3+ could 

be observed before reaction with D2O 

Formation of C4H10O3 during the low temperature oxidation of 

DEE in a JSR (data: circles, simulation: line). The integrated 

signal was obtained in FIA/APCI positive mode of C4H11O3+(m/z 

107.0699) ion 

Combust. Flame 228, 340-350 (2021) https://doi.org/10.1016/j.combustflame.2021.02.007 
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Further investigations of DEE cool-flame: KHPs  
 

  

Mass spectrum showing the formation of C4H8DO4+ (m/z 

122.0558) after H/D exchange with D2O 

Formation of C4H9O4+ (m/z 121.0492) ion during the low 

temperature oxidation of DEE in a JSR (data: circles; 

simulation: line). 
Combust. Flame 228, 340-350 (2021) https://doi.org/10.1016/j.combustflame.2021.02.007 
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Further investigations of DEE cool-flame: HOMs  
 

 

Formation of highly oxygenated molecules during the low temperature oxidation of DEE in a JSR: (●) di-keto-

hydroperoxides C4H6O5 corresponding to C4H5O5– ion (m/z 133.0142). (Δ) di-keto-dihydroperoxides C4H6O7 

corresponding to C4H5O7– ion (m/z 165.0041). 
Combust. Flame 228, 340-350 (2021) https://doi.org/10.1016/j.combustflame.2021.02.007 
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THF cool-flame: KHPs formation  
Initial radicals formed by H-atom abstraction on THF
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Energy & Fuels 35(9) 7242–7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291 
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THF cool-flame: ROOH formation  
 

 

Formation of C4H8O3 in a JSR where 5000 ppm of fuel are oxidized. Analyses were performed in FIA and APCI (+) 
mode. The data (symbols) represent the signal recorded at m/z 105.0545, scaled to the maximum computed mole 
fraction (line, Fenard et al.). Energy & Fuels 35(9) 7242–7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291 
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THF cool-flame: KHPs formation  
 

  

Formation of C4H6O4 in a JSR where 5000 ppm of fuel 

are oxidized. Analyses were performed in FIA and APCI 

(+) mode. The data (symbols) represent the signal 

recorded at m/z 119.0338 (C4H7O4+), scaled to the 

KHPs maximum computed mole fraction 

Consumption of THF under the same conditions based 

on m/z 73.0647 (C4H9O+). The data (symbols) are 

compared to simulations (lines). 

Energy & Fuels 35(9) 7242–7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291 
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THF cool-flame: KHPs formation  
 

 

Chromatographic separation on a Hypercarb PGC column (100% ACN, 100 μL/min, 40°C) of KHPs isomers (C4H6O4) 

obtained by THF oxidation at 590 K. The APCI + mode was used.  

Energy & Fuels 35(9) 7242–7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291 
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THF cool-flame: KHPs formation (ALS data) 

  

Left: Experimentally observed photoionization efficiency curve of m/z = 118.0266 (C4H6O4) (symbols) after 

molecular-beam sampling of intermediates of THF oxidation in a jet-stirred reactor from 8.5 to 10.0 eV (left panel) 

and 9.5 to 11.0 eV (right panel). The experimentally observed ionization thresholds are indicated with white boxes 

and are compared with theoretically predicted ionization energies (marked in gray) of the six conceivable keto-

hydroperoxide isomers. Right: Kinetic modeling using the model of Fenard et al.  

From Hansen et al., DOI: 10.1021/acs.jpca.9b07017 
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THF cool-flame: HOMs formation 

 

Formation of C4H8O7 in a JSR where 5000 ppm of fuel are oxidized. Analyses were performed in FIA and APCI (-) 

mode. The data (symbols) represent the signal recorded at m/z 167.0191 (C4H7O7-). 

Energy & Fuels 35(9) 7242–7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291 
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Ammonia oxidation  
 

 

 

  

Data (symbols) and computed (lines) results for NH3 oxidation in a JSR: 1000 ppm of NH3, τ=100ms; 
φ=0.1. Models: (a), (b), (c), and (d). 

[a] A.A. Konnov, Combust. Flame 156 (11) (2009) 2093-2105. 
[b] Y. Song, H. Hashemi, J.M. Christensen, C. Zou, P. Marshall, P. Glarborg, Fuel 181 (2016) 358-365. 
[c] J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K. Yamada, Int. J. Hydrogen Energy 43 (5) (2018) 3004-3014. 
[d] P. Dagaut, P. Glarborg, M.U. Alzueta, Prog. Energy Combust. Sci. 34 (1) (2008) 1-46. 
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Computed (lines) and literature experimental (symbols) results for NH3-air flames at 1 atm. 

 

The kinetics of the reactions NH2 + H → NH + H2 and HNO + H → NO + H2 were updated (Otomo et al., 2018) to 
better simulate burning velocities of ammonia in air.  

Dagaut, CST (2019) https://doi.org/10.1080/00102202.2019.1678380 
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Ammonia oxidation boosted by NO: 
 

 
Impact of the initial concentration of NO on NH3 conversion. Experimental results obtained in a JSR at 
1 bar, 1000 ppm NH3, τ=100 ms, φ=0.1, 0 ppm (open symbols), 500 ppm (small black symbols), and 
1000 ppm (large black symbols) of NO.  

P. Dagaut, CST(2019) https://doi.org/10.1080/00102202.2019.1678380 
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Ammonia oxidation boosted by NO: 
Reaction pathway analyses were performed to delineate the mechanism responsible for the mutual sensitization of 

ammonia and nitric oxide. The computations shows that it occurs via several reaction pathways leading to OH 

production, which is the main species involved in ammonia oxidation. In the present conditions HO2 is mainly 

produced via:  

NNH+O2 → N2+HO2  

and  

H+O2+M → HO2+M.  

The production of OH results from a sequence of reaction including  

NH2+NO → NNH+OH  

NNH → N2+H  

H+O2 → OH+O  

NO+HO2 → NO2 + OH. 
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Effect of trace amount of Nitric Oxide (NO) addition on ammonia autoignition in a rapid compression machine 
 
 

 
 

Gabriel J. Gotama et al., Combustion and Flame 277 (2025) 114182   
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Issues 

 

“The chaotic state in parameter values for nitrogen chemistry in combustion was alerted in 

the past by others, and similar concerns are raised in the present work. Future ammonia 

modeling studies should properly justify the thermo-kinetic parameters they use, and 

especially justify any deviation from established state-of-the-art values. 

Ammonia oxidation modeling was shown to suffer from the "many-model" problem. An 

accurate and consistent set of thermochemical and kinetic parameters is necessary. The 

present work suggests a comprehensive set of thermodynamic parameters and 

recommends rate coefficient values for cases in dispute among recent models.” 

 
“Thermodynamic and Chemical Kinetic Parameters in Ammonia Oxidation: A Comparison of Recent Studies and 

Parameter Recommendations” by A. Grinberg Dana, K. Kaplan, M. Keslin, C. Cao, and W.H. Green, Energy 

&Fuels (2025)¶  
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SUMMARY 
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Biofuels: biodiesel, ketones, alcools, ethers, levulinates. Emphasis on low-T products 

Ammonia 
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