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Tsinghua-Princeton CISS 2025
Combustion Chemistry

Philippe Dagaut, CNRS, Orléans, France
1/ INTRODUCTION

What is combustion?

Why combustion?

Statistics

Chemical Kinetics and Modeling
Global fuel properties

Composition of Fuels

2/ EXPERIMENTAL TECHNIQUES FOR KINETIC MODELS ASSESSMENT
Introduction
Shock-tubes and rapid compression machines
Flow reactors: Tubular Flow Reactors and Stirred Reactors
Flames

Some conclusions and perspectives

3/ MODELING
Modeling: General information

Temperature dependencies of elementary reactions
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Pressure dependencies

Kinetic analyses

Sensitivity analyses

Pressure/Temperature dependencies and reaction pathways
Oxidation at low-T

Pyrolysis and high-T oxidation

Single-fuel vs. multi-fuel components

4/ POLLUTANTS: NOx formation (thermal, prompt, NO, NNH) and reduction (SNCR, reburning)
NOx formation
NOx reduction
UHC and soot

Effect of trace species on ignition: NOx, ozone

5/ COMMERCIAL FUELS, SURROGATES, BIOFUELS
Gasoline
Diesel
Jet fuel
Biofuels

Ammonia
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Part 1
INTRODUCTION

|
La Guerre du Feu (Quest for Fire), Jean-Jacques Annaud, 1981
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Where is combustion?
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What is combustion? (1/2)

The oxidation of a fuel, ultimately leads to the formation of carbon dioxide, water, and heat in the case
of organic fuels (e.g. hydrocarbons).

Other definition: an exothermic redox reaction between a fuel (reductant) and an oxidant (e.g., oxygen
from air)

Incomplete combustion yields UHC and soot. A

NOx resulting from nitrogen oxidation can also be released. A

HC,NOx,COx

HC,NOx,COX RH+OH2R+H20
R+02+R0O2
RO2+NO=RO+NO>
HO2+NOFOH+NO2
2R0O2+2R0O+0py, ...
RO2+HO2TRO2H+09, ...

NO2+hv—=>NO+0O; O+02+M—03

HC,NOx,COx

(DL o0—
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What is combustion? (2/2)

Combustion involves chemical reactions, thermochemistry, kinetics, heat and mass transfer, radiation...

The overall/global chemical equation, e.g. 2 H2 + O2 = 2 H,O, CH4 + 20, = CO, + 2H20, is a mass
balance that does inform on the reaction pathways to products.

Equivalence ratio and excess air:

¢= {[Fuel]/[o2]} / {[Fuel]/[OZ]} at stoichiometry

A=1/p
2H2+02=2H20 ¢=1 and A = 1 (stoichiometric mix)
3H2+02=2H0 +H ¢>1 and A < 1 (fuel-rich, excess of fuel, some left over)
2H2+202=2H0+ 0O ¢<1 and A > 1 (fuel-lean, excess of oxygen, some left over)

The combustion of methane involves a long sequence of elementary reactions (initiation, propagation,
branching, and termination). They involve stable species and labile species (atoms, radicals). These
reactions proceed with reaction rates ranging from slow (e.g., RH+O>) to very fast (R+R’).
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Why combustion?

Transport accounts for ca. 20% of the total global primary energy consumed, ca. 23% of CO;
emissions, ca. 7 billion tons of COs..

> 99.9% Transport is powered by |.C. engines (land and marine) and air transport by GT.

G. Kalghatgi Applied Energy 225 (2018) 965-974
Table 2
Fuel capacity and equivalent battery pack size for three different types of aircraft.
Maximum Take-off Weight Volume of fuel, Weight of fuel”, Energy content of fuel Weight of battery pack with the same WBP/MTOW
(MTOW), kg liters kg (ECF)?, MWh ECF® (WBP), kg
S —
Embraer 135 [41] 20,000 5146 4168 51 284,851
Airbus A320 Neo 76,000 26,730 21,651 266 1,479,506
[42]
Airbus A380-800 576,000 323,545 262,071 3223 17,908,216
[43]

The global demand for transport energy is ca. 105 TWh of liquid fuel energy/day (38,325 TWh/year)

In 2016 the consumption of wind and solar energy together reached 1,292 TWh/year.
In 2016 the consumption of electricity reached almost 25,000 TWh/year. A
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Breakdown by country (TWh) World - 2017

k.
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World electricity production
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World: Total Oil Product Demand by
Type of Product, 2014

Fuels

Heating & Fuel
Qil

IEA, 2009

98% transport fuels are oil-derived

H Transportation

B Other Products

What do we burn?
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Primary Energy Use Primary Energy Use

2010 World marketed energy use Figure 2. World marketed energy use by fuel type
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Sustainability:

We need to burn cleaner

We need more efficient combustion (energy production)
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EU regulations
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PM1o (<10 microns)
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Sources of particulates: industry, agriculture, air and ground transportation (soot, tires, brakes), homes, wild fires,
volcanoes, soil erosion and hurricanes/tornados, sea salts...
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PARTICULATES

Concentration of particulate matter with an aerodynamic diameter of 10 pym or less (PM10)
in nearly 3000 urban areas*, 2008-2015

Annual mean PM10 (ug/m3)
<20
2029
30-49 )
* 5099
¢ 100-149
e =150 * The mean annual concentration of fine suspended particles of less than 10 microns in diameters 0000750015 0.03 Kilometers
= . - . N
is a common measure of air pollution.
The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever ~ Data Source: World Health Organization 755N \World Health
on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, Map Production: Information Evidence R ‘i‘y’ Organization

or concerning the delimitation of ifs frontiers or boundaries. Dotted and dashed lines on maps represent appreximate border lines and Research (IER)

for which there may not yet be full agreement.

World Health Organization © WHO 2016. All rights reserved.

See also https://lwww.conserve-energy-future.com/causes-and-effects-of-particulate-matter.php
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PARTICULATES and health
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N.B. PM1 (<1 pm or 1000 nm)

PARTICULATES and health
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Heaction time
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GHG

Transport 14%

Rest of Global
GHGs 86%

Domestic Air

Sources & Notes: [EA, 2004a. See Appendix 2.A for sources and Appendix 2.B for sector definition.
Ahsolute emissions in this sector, estimated here for 2000, are 5,743 MtCO,.
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Grams CO, per Kilometer normalized to NEDC Test Cycle
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[1] China’s target reflects gasoline vehicles only. The target may be higher after new energy vehicles are considered.
[2] US, Canada, and Mexico light-duty vehicles include light-commercial vehicles.
[3] Supporting data can be found at: http://www.theicct.org/info-tools/global-passenger-vehicle-standards
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Chemical Kinetics and Modeling

HC,NOx,COx

HC,NOx,COx RH+OH=R+H50
R+02+=RO2
RO2+NO+=RO+NO>
HO2+NO=OH+NO2
2R0O2+2R0O+09, ...
RO2+HO2+RO2H+0O9, ...

NO2+hv—>NO+0O; O+O2+M—03

HC,NOx,COx
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Chemical Kinetics and Modeling

(@)
-H +0, RO, H-shift
C10H16 CIOHIS CIOHISOZ C10H1504C10H15 O +2 C]OHISO C10H14()H
Limonene R’) @ (RO5) (RO’) (Q"OH)
C10H14OH C10H1503 s C OH 505 e C10H15O7 L CoH 09 Hoti C10H15O
2) +0, (3) +0, (4) +02 (5) +0, (6)
(0"OH) "00Q0H HOOQ'(OH)OO" (H00),0"(OH)0O" (HOO0);P(OH)00" (H00),P'(OH)0O"
&l e | g 5|2 5| 2 5| 2
C10H1402 C10H14()4 C10H14O6 C10H14O8 C10H14010
OQ'OH HOOQ"(OH)O (HOO),P(OH)O (HOO),P'(OH)O (HOO)sP"(OH)O
(b)
+0, H-shift +0, H-shift 10O,
R —» ROO' —% QOOH —2» 00Q00H Mo HOOQOOH —Zm (H00),Q'00"
(1) 2 oz 3) oz
o w o n
T | B = | =
HOOQ'O (H00),Q"0
H-shift +O H hift
(H00) Q00" — (H00),Q"00H —» (H00),Q"00" — (HOO),POOH —»(HOO) POO’
(4) e (5) e
@) v @) w
= | & T | &
(HO0),PO (HOO),P'O
+0, H-shift
(HOO) POO" it (HOO),POOH —» (HOO)P'00" ——» (HOO).P"O
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Experimental data <= Model

Constrain the model by using

& Global parameters: Ignition delays (initiation reactions, R+0.)
Burning velocities (H fluxes)

& Detailed information: Species concentrations (~ all processes)

Initiations: RHSR+H

RHS R +R

RH+ OS5 R+ HO2
Propagations: RH+ X S5 R + HX (X=H, O, OH, HO,, CHz, HCO, ...)
Terminations: R+ H S RH

R +R"S RH

< Different types of ‘reactors’: ST, PF, PSR, Flames (laminar premixed,
opposed flow), RCM, engines
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Global vs. detailed chemistry

H: + 2 O2 = H20: mass balance; misrepresents reaction pathways

Global Rate = A T" exp[-E/R T ][Fuel ][02] "

In reality, many more reactions:

H+ H+ M—>H+ M H.+ O2—HO+ H
O+0+M->02+M H+O0,—-0OH+O
O+H+M->OH+M H.+ OH —-HO +H
H2+ O2 — 2 OH H+ O - OH +H
H+OH+M->HO+M H + O2—HO:
H.+ O — 2 OH 2 HO2—H20: + O-
OH+ OH - O + H.O H.0,—2 OH

M= collision partner, e.q. diluent

The value of ki indicates how fast the reaction can proceed

Such sets of reactions constitute a “chemical kinetic reaction mechanism”
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Kinetics

Forward reaction A+B—->C+D

Rate = -d[A)/dt=k+: [A][B]=A:T"exp[-E/RT][A][B]
Reverse reaction C+D->A+B

Rate = -d[C)/dt=k. [C][D]=A-T"exp[-E'/RT][C][D]
Equilibrium constant computed from thermochemistry  K¢q = k+/ k-
k. and/or k. are determined experimentally or computed

K can be obtained in tabulations (JANAF, NASA ...)
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Thermodynamics

Potential energy

Transition state

E, (reverse)

-0 + D
HF + F°
Products

Progress of reaction

H+F, = HF +F

As H approaches F2, the F-F bond extends and electron
density moves from that F-F bond into the newly
forming F-H bond. This involves an increase in potential
energy.

1st law: The energy U of an isolated system is constant

dU = dQ + dW; Q= heat absorbed by the system; w=
work done on system

2"d Jaw: Mechanical energy can be transferred
completely into heat but heat cannot be transformed
completely into mechanical energy

dS = dQ/T,; S = entropy
dS - erev/T and dS > inrrev/T

3 law: The entropy of a perfectly crystalline substance
at 0°Kis 0

S=0atT=0°K(%irrC1)(S)=O)
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Thermodynamics

Gibbs energy: G=H-TS
At constant T, AG = AH—-TAS
Equilibrium occurs at minimum G (at constant 7, P)

Equilibrium constant: AG° = -RT In(K) (° refers to the standard state)

Heat capacities (, at constant pressure; , at constant volume):

Cv = (dU/JT), Cp = (dU/JT), C, = C, + R (ideal gas; universal gas constant 8.314 J/mol/K)

T2

H(T,) = H(T,) + JT 1 C,dT

T2

AH(Ty) = A H(T,) + f A,C,dT
T1

Combustion Institute Summer School, Tsinghua-Princeton June 2025

30



Thermodynamics

Gibbs Energy (G) indicates the spontaneity of a reaction
G depends on Enthalpy and Entropy

Entropy contribution increases as T increases: G=H - TS

ArG < 0 for spontaneous reaction

ArG > 0 for non-spontaneous reaction
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Global fuels properties
Cetane number, Octane number

Cool flame High-T
s 1
E CN=0 : ON>100
= P — —
: 5
© :
piston dméged
| | by strong knock (LLNL)
./ NTC |
! : -
500 ~G50 ~B00
Temparatura/K

Fuel concentration vs. temperature

S.I. engines: ON=100 for iso-octane (CsH1g) and ON=0 for n-heptane (C7H1¢)
C.l. engines: CN=100 for n-hexadecane (C1eH34) and CN=0 for 1-methylnaphtalene (C11H10)
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RH

. +X¢-XH
Olefin + HOp < 2 R SRR
O2
RH lT R02
r ROOH :\ o, fTOZ —» RO +RO + 05

O A/

— 0y T

Cyclic Ether + OH Olefin + Carbonyl
OOQOOH Compound
l + OH
HOOQ'OOH
o' ooH + OH

'

Decomposition < OQ0O + OH
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Structure-reactivity

CN=100

S.l. engines: ON=100 for iso-octane (CsH1g) and ON=0 for n-heptane (C7H1e¢)
C.l. engines: CN=100 for n-hexadecane (C1sH34) and 0 for 1-methylnaphtalene (C11H1o)
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Hydrocarbons

Paraffins

2-Méthylpentane
+Methylpentane
r-Heptane

22 A-Triméthylpentane
ri=DMécane

n-Dodécane
3-Ethvidécans

4 3-Ditthyloctane
2,345 -Pentaméthylheptane
n-Tridécane

2 -Diméthylundécane
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Hydrocarbons
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Hydrocarbons

a-onyvibenzéne
HOctvixyiéne

2P hénylundécine
Z-Fhényiundéec-2-ene
2-Meéthyvl-2-C2-naphtyDhexane
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A-Méthyl-1-(Z-naphtylheptane
T-Phényltridécane
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a=Bléthyl-5-(Z-naphtylinonane
2-Methyl-2-(2-naphtyl)décane
3-Ethyl-34 2-naphtvinonane
a-Méthyl-i-lsobutyl--phénylundaécane
2-Bithvl-2-phiénylpentadécans
a-Butyl-5-phényitétradécans
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a-Phényleicosane
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Hydrocarbons
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Hydrocarbons

2.2 5Trinvit hylpentane

2 AT e Dyl pee re o e

23 G- T rimeet byl el e

2 3 =-Trimest hiyfi et ane

2-Fg v e byl pen et aen

i, e et R e e R E LR L e
S-NonATE eF -l canes supetrisars

CHEMERes

EIIl]rIEnI_-

Fropreldpee

Fgt-1 ame

LTS B T

Peml-1-2ae

e -2-dmne
2-Méashyibuat l-fne
2Meshvibar-2-4ne
Hewr-L-Ene

M- -

Hex - e
ZMAahvipeot-L-na
2-Moshvipoenot-L-&anae-
St hylpent-L S
Z-Mdhwipeni-2-Ene
S-MEhylpent-2-Sive
4AMEthvipentodepne
2 Ethylpens-l-enc

3. 3-Dimdry et | e
b B b T B L B S
& e Sy e - E e e
Ha=go1-1-50=
Hepd-Z2—fne

Combustion Institute Summer School, Tsinghua-Princeton June 2025

RON

N g
L
L. L
Loz, v
=1
=1 H

L= 1
L2 4%

L= 0
51,0
o

L2 5
L g |
a4
B2, 7
BL Ak
L
R5 A

&a H
or.2
oo 3
e
111.7
s A
133
R
viA4

MON

e G /
144k O

o 4

959

HE.1

&

H5L.0
H5.0
RO
H10
ar7.d
S0
"2
24 &
634
Sk =
ik 3
TH3
812
ik T
3.0
Hl.0
o T e
wiht
4.5
ok,
H2.=
=T
Bt =



Composition of Fuels

Characteristics of Petroleum Processing
O Refinery Coke

Vacuum Residue
LIs
3 O Atmospheric Residue

MEE——— Hydregenation
5] | e 0 Crude Oil
)< D Coke 0 Gas 0il
© Jet Fuel / Diesel
Cracking |
0 . T ® Gasoline

0 10 20 30 40 S0

Average Carbon Number {Atoms per Molecule)

Hydrogen/ Carbon Atomic Ratio

o LG

e NG: methane + higher alkanes (ca. Cs)
e LPG: region-dependent; C:—C4 alkanes and alkenes

e Gasoline: C4—C12 hydrocarbons. Mixture of paraffins (alkanes), olefins (alkenes),
cycloalkanes (naphthenes), aromatics

e Kerosene (Jet A-1 fuel), standard AFQRJOS (Aviation Fuel Quality Requirements for Jointly
Operated Systems): Ce—C16 hydrocarbons. Mixture of paraffins (alkanes), cycloalkanes
(naphthenes), aromatics and <2% alkenes.

e Diesel: Cc—C2s hydrocarbons. Mixture of paraffins (alkanes), olefins (alkenes), cycloalkanes
(naphthenes), aromatics, naphteno-aromatics
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Composition of Fuels: Additives to replace Pb(C:2Hs)4 and others

Table 1. Relative Antiknock Effectiveness of Various Compounds?

tetraethyllead 118 tetraethyltin 4

tetraphenyllead 73 triphenylarsine 1.6
iron pentacarbonyl 50 xylidine 1.6
nickel carbonyl 35 diphenylamine 1.5
diethyl telluride 27 N-methylaniline 1.4
triethylbismuth 24 dimethylcadmium 1.2
diethyl selenide 7 aniline 1.0
stannic chloride 4.1 ethanol 0.1

@Vs aniline = 1 on a mole basis. From ref Te, by permission of Springer-Verlag and
Ethyl Corp.

(1e) Frey, F. W.; Shapiro, H. Top. Curr. Chem.1971, 16, 243-297. (f) Shapiro, H.; Frey, F. W. The Organic Compounds of Lead;
Wiley-Interscience: New York, 1968

From: Organometallics 2003, 22, 25, 5154-5178 https://doi.org/10.1021/0m030621b
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3-Way catalyst to reduce (1) CO, (2) UHC, and (3) NOx (>1980) Pt/Rh/Pa

Reduction of nitrogen oxides to nitrogen (N»)

«C + 2NO; — CO;3 4 2NO

«CO+NO — CO;y + %Nz

1
¢2C0O + NOy; — 2C0, + ENQ
1
eH, + NO — H,0 + §N2

Oxidation of carbon, hydrocarbons, and carbon monoxide to carbon
dioxide ®

oC+ 0y — COy
1
«CO + 502 — COy
aC,H, +b603; — c¢COy +dH;0 a, b, c,d, x,y€Z
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EtOH
Production:

Oxidation/hydratation of ethylene: C2H4 + H, O — C2HsOH

Alcoholic fermentation of sugar (bio-ethanol): CcH1206 — 2 C2Hs0OH+ 2 CO; + Heat
RON: 108.6

ETBE
Production: isobutene + ethanol + catalyst => ethyl ter-butyl ether + H20

RON: 110-119
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Composition of Fuels: Additives and Emissions

50 '
B MTBE 0->15%

40 1 mETBE 0->17%

a0 {4 B Ethanol 0-=17%

20 H

C O g L &L
o1 k"\@ &
M. (<0 L'

Change-%

Effect of methyl ter-butyl ether, ethyl terbutyl ether, and ethanol on exhaust emissions. Change-% represents
difference in emissions of blended fuels (15-17%) vs. non-oxygenated fuel.

From : Aakko-Saksa, P., Rantanen-Kolehmainen, L., Koponen, P., Engman, A. and Kihlman, J. (2011) Biogasoline options —
Possibilities for achieving high bio-share and compatibility with conventional cars. SAE International Journal of Fuels and
Lubricants, 4:298-317 (also SAE Technical Paper 2011-24-0111).
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GC analysis of a NG sample

Methane

— Ethane
= Propane
> i-Butane

> n-Butane

' i-Pentane

"‘I Pentane

i._
P Carbon Dioxide

| | | 1
8 10 12 14 16

Retention time / min

MY -
-
o

(https://www.thermofisher.com/)
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GC analysis of a US LGP sample

10
o 11h3)\ \ 17 18
L 2

RDUOD o O O B GO B

10.
11.
12.
2 13.

1 14.
15.

16.

17.

18.

8 19.

Methane
Ethane
Ethylene
Propane
Cyclopropane
Propylene
Isobutane
Acetylene
n-Butane
Propadiene
trans-2-Butene
1-Butene
Isobutylene
cis-2-Butene
Isopentane
n-Pentane
Propyne
1,3-Butadiene
1-Pentene

0 1 2 3 - 5 6 7 8 9 10 11 12 13

Retention time / min
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GC analysis of a gasoline sample

1. Isobutane 11. Benzene 21. 2,3-Dimethylhexane 31. 1-Methyl-3-ethylbenzene
2. Butane 12. 2-Methylhexane 22. 2-Methylheptane 32, 1-Methyl-4-ethylbenzene
3. Isopentane 13. 2,3-Dimethylpentane 23. 3-Methylheptane 33. 1,3,5-Trimethylbenzene
4, Pentane 14. 3-Methylhexane 24. Octane 34. 3,34-Trimethylheptane
5. 2,2-Dimethylbutane 15. Isooctane 25. Ethylbenzene 35. 1-Methyl-2-ethylbenzene
6. 2,3-Dimethylbutane 16. Heptane 26. m-/p-Xylene 36. 1,2,4-Trimethylbenzene
7. 2-Methylpentane 17. 2,5-Dimethylhexane 27. o-Xylene 37. iso-Butylbenzene

8. 3-Methylpentane 18. 2,4-Dimethylhexane 28. Nonane 38. sec-Butylbenzene

9. Hexane 19. 2,3 4-Trimethylpentane 29, iso-Propylbenzene 39. 1,2,3-Trimethylbenzene
10. 2,4-Dimethylpentane 20. Toluene 30. Propylbenzene 40. Indane

41, 1,3-Diethylbenzene

42. N-Butylbenzene

3 15 20 26 43. 1,4-Dimethyl-2-ethylbenzene

5 44, 1,3-Dimethyl-d-ethylbenzene
45. 1,2-Dimethyl-4-ethylbenzene

36 46. 1,2,4,5-Tetramethylbenzene

47. 1,2,3,5-Tetramethylbenzene

12.13 14 27 48. Naphthalene

49. 2-Methylnaphthalene

50. 1-Methylnaphthalene

51. Dimethylnaphthalenes

89 17 23

Retention time / min

(https://www.sigmaaldrich.com)
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GC analysis of a Jet fuel sample

100% T

n-C9H20
n-C10H22

n-C11H24

Total lon Count
n-C12H26

n-C8H18

Xylenes
1,2,4-Trimethylbenzene

n-C13H28

n-C14H30
n-C15H32

t n-C16H34

|
[

L] L] L4 T L) L] T L L] L T L] T L L) T T L ]

0 . . . 30
Retention Time /min

(Dagaut et al., CNRS)
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GC analysis of a GtL sample

C, Cio

FT-Jet fuel GTL

| ¢,
M il

Cis Syntroleum S-8
Cig
Cis c
16
Ci7 Cyg Cyg
5 10 15 20 25 30 35
Time/min

(Egolfopoulos et al., USC)
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GC analysis of a diesel fuel sample

25% T c15 C16
c11

C12

Total lon Count

C14

C17

C10 c13

C18
C19

C20

A

LINL A B B | lIIIlllllllllfrlll'lll'llIlITllIlIIIllIllll’lIlllll]Tl

c21

160

16
Retention Time /min

(Dagaut et al., CNRS)
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GC analysis of a B20 diesel fuel sample

1. Nonane (C9) 13. Heneicosane (C21)
2. Decane (C10) 14, Docosane (C22)
3. Undecane (C11) 15. Hexadecanoate (C16:0) C18:2
4. Dodecane (C12) 16. Tricosanoate (C23)
S. Tridecane (C13) 17. Tetracosane (C24) C18:
6. Tetradecane (C14) 18. Pentacosane (C25)
7. Pentadecane (C15) 19. Octadecanoate (C18:0)
8. Hexadecane (C16) 20. Oleate (C18:1)
9. Heptadecane (C17) 21. Linoleate (C18:2)
10, Octadecane (C18) 22. Linolenate (€18:3)
11. Nonadecane (C19) 23. Eicosanoate (C20:0)
12. Eicosane (C20)
C16:0
cia C1s Ci6
13 C17 25
ci8 20 |
C19 C22 c18:0l 1C18:3
JJML‘M !
| | | | | | | | | | | | | | | | |
2 4 6 8 10 12 14 16 18 20
Min

(https://www.sigmaaldrich.com)
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Summary

What is combustion? The oxidation of a fuel, ultimately leads to the formation of carbon dioxide, water,
and heat in the case of organic fuels (e.g. hydrocarbons). Other definition: an exothermic redox reaction
between a fuel (reductant) and an oxidant (e.g., oxygen from air). Incomplete combustion yields UHC and
soot. NOx resulting from nitrogen oxidation can also be released

Why combustion? Transport accounts for ca. 20% of the total global primary energy consumed, ca. 23%
of CO2 emissions, ca. 7 billion tons of CO2, ca. from livestock farming. > 99.9%Transport is powered by |.C.
engines (land and marine) and air transport by GT.

Chemical Kinetics and Modeling. Feed and feedback: Experimental data «—» Model. Global parameters:
Ignition delays (initiation reactions, R+0O32), Burning velocities (H fluxes) vs. Detailed information: Species
concentrations (~ all processes). Different types of ‘reactors’. ST, PF, PSR, Flames (laminar premixed,
opposed flow), RCM, engines; provide complementary data.

Global fuel properties: Cetane number, Octane number (S.l. engines: ON=100 for iso-octane and ON=0
for n-heptane; C.I. engines: CN=100 for n-hexadecane and CN=0 for 1-methylnaphtalene

Composition of Fuels. NG: methane + higher alkanes (ca. Cg); LPG: region-dependent; C3—C4 alkanes
and alkenes; Gasoline: C4—C12 hydrocarbons. Mixture of paraffins (alkanes), olefins (alkenes), cycloalkanes
(naphthenes), aromatics; Kerosene (Jet A-1 fuel), Ce—C1s hydrocarbons. Mixture of paraffins (alkanes),
cycloalkanes (naphthenes), aromatics and <2% alkenes; Diesel: Cs—C2s hydrocarbons. Mixture of paraffins
(alkanes), olefins (alkenes), cycloalkanes (naphthenes), aromatics, naphteno-aromatics; Additives: EtOH,
ETBE.
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Part 2

EXPERIMENTAL TECHNIQUES FOR KINETIC
MODELS ASSESSMENT
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1. Introduction

Chemical kinetic reaction mechanisms for combustion, either hand-written or automatically generated,
rely on experimental data obtained over a large range of conditions.

However, combustion is a complex, generally exothermic, phenomenon involving strongly coupled
chemical processes (reaction kinetics) and physical processes (diffusion and heat transfer). Thus, in
order to better assess chemical kinetic reaction mechanisms, it is preferable to design experiments

were the complexity of physical processes is minimized and the accuracy of the data is maximized.

This is the case for ideal reactors such as plug-flow reactors, perfectly stirred reactors, and shock-

tubes.

In practice, the experiments should be performed under conditions were ideal reactor models can be

used, e.g., operating a JSR under highly diluted conditions, under near-isothermal conditions).
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Indeed, such kinetic reaction mechanisms need to be validated through extensive comparison of
modeling predictions and experimental results obtained under well-defined conditions. A wide range of
experimental facilities can provide such data which are usually described as ‘global’ and ‘detailed’. By
combining data obtained from several techniques and conditions, one can check their consistency and

use them to constrain chemical kinetic reaction mechanisms.

Global data include ignition delay times which can be obtained using shock-tubes, rapid compression
machines, or plug-flow reactors, and laminar burning velocities or flame speeds determined using
several types of experiments such as spherical flames in combustion vessels, Bunsen burners,
stagnation-flow flames, counter-flow flames, or heat-flux burners. Ignition experiments are particularly
useful for probing initiation and termination reactions and reactions of molecular oxygen with radicals
whereas they are usually less useful for probing the kinetics of propagation reactions involving atoms

and radicals.
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Initiations reactions:

RH(+M)=R+HH#M),RH(+M)=R +R" (+M),and RH + O, = R + HO;

Propagation reactions:

RH+ X =R+ HX (X=H, O, OH, HO,, CH3, HCO, ...) and radicals reactions, e.g.,

R+0,=R_y4+HO2 R=olefin+ R, R=olefin+H

Termination reactions:

R+ H (+M) =2 RH (+M) and R’ + R” (+M) = RH (+M).
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The paramount importance of H-atoms has been recognized long ago (tanford, C., J. Chem. Phys., 1947. 15(7): p. 433-
439.). Burning velocity experiments are very valuable for probing reactions involving H-atoms such as
RH (+M) = R+ H (+M) and R (+M) = product + H (+M). Burning velocities are also very sensitive to
the main branching reaction in combustion, i.e., H+O2 = OH + O

1 2 3 v, (k)
v, (k/5)

H+0,0H+0

HOz+ M
€O+ OH — CO;+ H
0, + H -0 + OH
0 + CHy—» CH0* H
He+CHy*M —> CH,+ M
CHO+ M —> CO+H*M .

Sensitivity of computed laminar burning velocity of a methane-air flame at 1 bar and T, = 298 K to
reaction kinetics. From Warnatz, J., The structure of laminar alkane-, alkene-, and acetylene flames.
Symposium (International) on Combustion, 18(1), p. 380, 1981.
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Detailed data are mostly concentration profiles of stable and unstable chemical species observed
during the oxidation and combustion of fuels. Many reactors in conjunction with sampling methods

and analytical techniques have been used to acquire such data.

Analytical techniques are often used after gas sampling performed using a range of probes (e.g.,
low-pressure, cooled, molecular beam) or traps (cold trap, bubblers, traps containing absorbents).
These probes should stop chemical reactions and transfer a chemical sample to appropriate
analyzers without changing its composition. This assumption needs to be verified.

Low-pressure probes reduce reactions rates by lowering molecular concentrations and temperature
after gas expansion.

Cooled probes reduce reaction rates which are exponentially temperature-dependent, according to
the Arrhenius equation.

Probes are responsible for disturbance of the reaction medium (flow, temperature) which can result in

additional complications for interpreting the experimental results.
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Many cool traps can be used to collect the condensable compounds at the temperature of the trap

(water ice: 273 K; CO2 dry ice: 194.65 K; liquid nitrogen: 77.2 K). The use of liquid nitrogen traps

oxygen (O2 boiling temperature = 90.2 K) and requires particular care to prevent hazards. I\

Nowadays, the most popular experimental techniques used are flow reactors (jet-stirred reactors,
tubular flow reactors), burner stabilized laminar flames (premixed low-pressure flames, opposed flow
diffusion flames), and shock-tubes. These techniques by themselves are useful because they cover a
wide range of conditions (temperature, pressure, equivalence ratio, initial concentrations, residence
time, recirculation rate) allowing to probe the complexity of combustion chemical kinetics. But this is
through their coupling to a large range of analytical techniques that one can acquire the data needed

to validate detailed kinetic combustion models.
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Among these analytical techniques, some are very popular whereas others are less frequently used:
Gas chromatography (with thermal conductivity detector, flame ionization detector, mass
spectrometry), molecular-beam mass spectrometry, Fourier transform infrared spectrometry are

commonly used. They are commercially available, reliable, and easy to use.

Other spectroscopy techniques are also used in laboratory experiments. They are mostly used to
measure radicals, atoms, and unstable molecular species in the UV or the infrared. Recent coupling of
synchrotron-sourced photoionization with mass spectrometry allowed very detailed probing of
oxidation and combustion processes. Several mass spectrometry techniques are used in laboratory
experiments. They mostly differ by the use of different types of mass separation (time-of-flight,
quadrupole, ion trap, Orbitrap®), and ionization mode (electronic, chemical, photonic).

By combining the above-mentioned laboratory experiments, one can cover a very broad range of

conditions relevant to practical applications such as internal combustion engines and gas turbines.
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By combining shock-tubes and RCM experiments, one can probe fuels ignition under internal
combustion engine conditions. The measurements of burning velocities and flame structures are
limited to about 10 bar. Whereas individual reactor experiments have limited operating ranges, by
combining them, one can provide detailed data over almost the entire range of pressure and

temperature pertinent to I.C.engines and GT.
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2. Shock-tubes and rapid compression machines
Shock-tubes and RCM are batch reactors which can provide both global and detailed combustion

data, i.e, ignition delay times and speciation.

These techniques have been used for several decades. In 1890, Vieille started using compression
driven shock tubes (Vieille, P., Comptes Rendus de I'Académie des Sciences, 1890. 111 p. 639-641)

In 1906, Falk used a RCM to determine ignition temperatures (raik, K.G., J. Am. Chem. Soc., 1906. 28 p. 1517).

Major improvements have been made over the years, allowing the acquisition of very useful global
and detailed data for kinetic modelers (Hanson, R.K. and D.F. Davidson, PECS, 2014. 44: p. 103-114; Sung, C.J. and H.J. Curran,
PECS, 2014. 44: p. 1-18; Goldsborough, S.S. et al., PECS, 2017. 63: p. 1-78).
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2.1 Ignition data from RCM and ST.

RCM are limited to the investigation of relatively long ignition delays (5—100’s ms) at moderate-T, c.a.
1000 K, and to P < 100 bar, shock-tubes can operate over a wider range of P (up to 100’s bar) and to

very high-T (1000’s K) where ignition delays are rather short (ca. 1-100’s ms).
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Shock-tube

Vacuum Vacuum

Pump Pump Test Section
T Diaphragm T
= - - Photol
Driver Section Driven Section . Y
(Driver Gas) (Test Gas) "
T T i'"' Laser
Hydrogen Gas Mixture FM Laserabsorption
{(Mixing Assembly) VUV Absorption
p.T incident, reflected shock wave ¢ c
! 4[\@ @
> B >
t=0 time t=0 time t=0 time

(a) Pressure trace, (b) temperature trace, (c) spectroscopic trace

A shock tube is a several meters long tube with a driver (high-P) and a driven (low-P) section,
separated by a diaphragm. The reacting mixture is introduced in the driven section. The driver
section is filled with inert gas (He...). After diaphragm breaking, a shock wave forms and
propagates downwards the tube at supersonic speed, heating and compressing the reacting
mix gas within < 1 us (incident SW). The SW reflects at the end wall and the preheated
reacting mix is heated and compressed again (reflected SW).

https.//www.friedrichs.phc.uni-kiel.de/en/research/shock-tube-frequency-modulation-spectroscopystossrohr

Combustion Institute Summer School, Tsinghua-Princeton June 2025 66



Ignition traces in ST
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Fig. 1. Pressure and band emission traces of CH under changing influence parameters.

Ciezki and Adomeit, Comb. Flame 93 (1993) 421-433.
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Experimental (symbols) and modeled (lines) ignition delay times for a ¢ = 0.5 NG/air mix measured
using a RCM (open symbols) and a shock-tube (closed symbols) at 8—10 atm (black) and 19—-20 atm
(red). From Sung, C.J. and H.J. Curran, Using rapid compression machines for chemical kinetics
studies. Progress in Energy and Combustion Science, 44: p. 10, 2014.
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Modelers must be aware of a complication when trying to combine ignition data obtained in a shock-
tube and a RCM. At first, they can look irreconcilable. In fact, it is necessary to consider facility-

dependent effects before combining ignition delay times measured in shock-tubes and RCMs.

These have been described with great details in several publications and have been reviewed recently

(Sung, C.J. and H.J. Curran, PECS, 2014. 44: p. 1-18).

Up to now, a large set of data is available for the ignition of fuels ranging from hydrogen to practical

fuels such as jet fuels or biodiesel (pagaut, P., et al., CNF, 2014. 161(3): p. 835-847; Ramirez-Lancheros, H.P., et al., CNF, 2012.

159(3): p. 996-1008). These data have been extensively used to propose detailed and simple kinetic models.
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2.2 Species measurements from ST and RCM.
Whereas speciation in shock-tubes has received much attention (studies concern both oxidation and

pyrolysis), a more limited database is available from RCM experiments.

Several research groups have used shock tubes to measure species concentrations using
spectroscopy (Hanson, R.K., PROCI, 2011. 33(1): p. 1-40; Roth, P., Forsch. Ing.-Eng. Res., 1980. 46(3): p. 93-102) and gas-
chromatography (Tranter, R.S. et al., Rev. Sci. Instr., 2001. 72(7): p. 3046-3054; Tranter, R.S. et al., PCCP, 2002. 4(11): p. 2001-2010).
Hanson and co-workers have recently reported laser-absorption-based measurements in shock-tubes

of time-histories of reactants, small-radicals, stable intermediates, and combustion products:
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1494K, 2.15atm
1000 -300ppm heptane, o=1

100 ¢

Mole Fraction [ppm]

10 100 1000

Time-history for stable and labile species measured during the oxidation of n-heptane in a shock-tube
(continuous lines) are compared to kinetic modeling (dashed lines). From: Hanson, R.K., Applications
of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proceedings of the
Combustion Institute, 33(1), p. 10, 2011.
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Such data are particularly useful for improving kinetic reactions schemes. This is also true for data
coming from single-pulse shock-tube experiments with gas-sampling and GC analyses (sivaramakrishnan,

R. et al., PROCI, 2005. 30(1): p. 1165-1173):

12

10-

Mole Fraction/ ppm

12I4l] 12|El]' | 13|2I'.l 1360 | 1400
TIK

Toluene oxidation at ¢ = 1 and 610 bar in a shock-tube. (o) Experimental data CeHsCH3; (A ) Expt.
CO; (o) KBG model CeHsCHSs; (¢) KBG model CO; (o) STB model CsHsCHs; (A) STB model CO; (--)
fit to KBG model predictions; and (—) fit to STB model predictions. From Sivaramakrishnan, R., R.S.
Tranter, and K. Brezinsky, A high pressure model for the oxidation of toluene. Proceedings of the
Combustion Institute, 30(1), p. 1169, 2005
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More recent developments:

A miniature with high-repetition rate shock-tube was recently introduced by Tranter (7ranter, R.S. and P.T.
Lynch, Rev. Sci. Instr., 2013. 84(9): p. 094102) Who used it to probe pyrolysis chemistry of dimethyl ether at high
temperature (1400 —1700 K) and high pressure (3 —16 bar) with a tunable synchrotron-generated
photoionization time-of-flight mass spectrometer (Lynch, P.T. et al., Analytical Chemistry, 2015. 87(4): p. 2345-2352). This

new set-up opens up new horizons for chemical kinetics.

Data obtained with shock-tubes have been extensively used to propose detailed and simple kinetic
models for the oxidation of fuels ranging from hydrogen to large hydrocarbons and practical fuels
(gasoline and jet fuel, znu, Y. et al., in 53rd AIAA Aerospace Sciences Meeting. 2015; Li, Y., Ph.D., School of Chemistry. 2017, Nat. Univ. of

Ireland: Galway; Javed, T. et al.,CNF, 2017. 185(Sup. C): p. 152-1 59).
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Species measurements in RCM through gas-sampling started in the 1960’s (Roblee, L.H.S., CNF, 1961.

5(Sup. C): p. 229-234; Martinengo, A. et al., Symp. (Int.[) Combust., 1965. 10(1): p. 323-330; Fish, A. et al., Proc. Royal Soc. London. A. Math. Phys.

Sci, 1969. 313(1513): p. 261). Several groups have performed such experiments for the ignition of
hydrocarbons, alkyl nitrates, and oxygenated fuels. GC has been used in most of RCM experiments;

exhaust gas analyzers for CO, CO2, NOy, and unburned hydrocarbons have also been used (Rribaucour,

M. et al. J. Chim. Phys. Phys.-Chim. Biol., 1992. 89(11-12): p. 2127-2152; Minetti, R. et al., CNF, 1994. 96(3): p. 201-211; Minetti, R. et al., CNF, 1995.
102(3): p. 298-309; Van Blarigan, P. et al., SAE Tech Pap 982484, 1 998).

Spectroscopic methods in the UV and IR have also been used after Fish et al. (Fish, A. et al.,, Proc. Royal Soc.
London. A. Math. Phys. Sci., 1969. 313(1513): p. 261). These data have been used to propose detailed and simple
kinetic models for the oxidation of fuels (from Hz to oxygenates and large HC (sung, ¢.J. and H.J. Curran, PECS,
2014. 44: p. 1-18), but also served to identify the products of low-temperature oxidation of a range of fuels
(Minetti, R et al.., CNF, 1994. 96(3): p. 201-211; Minetti, R. et al., CNF, 1995. 102(3): p. 298-309; Walton, S.M. et al., Fuel, 2011. 90(5): p. 1796-1804;

Karwat, D.M.A. et al., J. Phys.l Chem. A, 2011. 115(19): p. 4909-4921).
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Advantages:
Can be run with very little fuel compared to flames and reactors experiments.
A wide range of operating conditions, in terms of P, T, and ¢, is covered by combining these

techniques.

Limitations/weaknesses:

Batch reactor experiments are time consuming because they involve mixture preparation, pumping
after each ignition experiment, replacement of the shock-tube diaphragm (needing disassembling /
reassembling).

Also, pressure history must be well characterized to allow accurate kinetic modeling.
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3. Flow reactors: Tubular Flow Reactors and Stirred Reactors

Flow reactors are particularly useful for measuring the concentration of reactants, intermediates
species, and final products of fuels oxidation or pyrolysis or interaction of fuels with other species,
e.g., NOx, SOx, CO2, H20.

They usually operate at temperatures below 1500 K and pressure less than 50 bar.

They are particularly useful for studying the low-T oxidation chemistry of fuels. In most of the
experiments, high fuel dilution (100-1000’s ppm) is used to avoid flame occurrence and large
temperature gradients. Nevertheless, experiments are also performed with higher initial fuel

concentrations (1—-few mole %).
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Whereas in tubular flow reactors, ideally called plug-flow reactors (PFRs), one can observe
chemical reactions along the reactor axis; in jet-stirred reactors the chemical composition is ideally
homogeneous. Flow reactors are usually heated by external ovens. Temperature measurements are
of great importance for running accurate modeling. In tubular reactors, this means that measurements

must be made along the reactors axis.

In JSR, temperature homogeneity is usually verified along the reactor main axis and measurements
used as input in isothermal perfectly stirred reactor model. Compared to flame experiments, flow
reactors are not limited to flammability limits. As shock-tubes, they allow studying fuel-lean oxidation
to pyrolysis. Although this is not very common, tubular-flow reactors operating under plug-flow

conditions can be used to determine ignition delays.
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3.1 Species measurements.

Two types of flow reactors are mainly used in recent kinetic studies. Tubular flow reactors consist of
a tube where reactants are injected and heated from the outside. The flow inside the tube can be

laminar (Rasmussen, C.L. et al., IUJCK, 2008, 40(8): p. 454-480; Zhang, T.C. et al., J.Phys .Chem. A, 2008. 112(42): p. 10487-10494) or turbulent
(Allen, M.T. et al., .J.C.K., 1995. 27(9): p. 883-909; Kim, T.J. et al., Symp. (Int.) Combust., 1994. 25(1): p. 759-766; Zhewen, L. et al, Meas. Sci.
Technol., 2017. 28(10): p. 105902):

Gas Sampling
. H -
Air compressor Balanced Air 3 Horiba bench
—> ok (TN S
Sample gas OGas
Probe
~ storage chromatography
o {  AirHeater |- | >
N, bottles o Exhaust
Main Air
—> —k ~~
Regulator Quartz Heat
! tube exchanger
.4 reactor
Fuel N2 for fuel vaporization VANAN é/Presslure
tanks vesse Back )
ok Heaters pressure
valve
k 4
Exhaust
ok | Heaters Heaters/Vaporizers f— ayetaim | 00 |
Liquid Fuel

Schematic of the Melbourne University high-pressure tubular flow reactor that operates up to 50 bar. From

Zhewen, L., C. Julien, L. Nicolas, Y. Yi, and J.B. Michael, Measurement Science and Technology, 28(10), 105902,
p. 3, 2017.
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Heater

Electric Resistance H Evaporator

uel Injector
Optical Access Ports

Schematic of the Princeton variable pressure tubular flow reactor that operates up to 20 atm and ca.
1200 K. From Kim, T.J., R.A. Yetter, and F.L. Dryer, Symposium (International) on Combustion, 25(1),
p. 760, 1994.

Whereas most of the currently used PRFs use conventional analytical instruments (e.g., GC, GC-MS,
FTIR) to probe the chemistry, molecular-beam mass spectrometry and tunable synchrotron VUV
photoionization have been introduced recently (zhang, T.C. etal., J. Phys. Chem. A, 2008. 112(42): p. 10487-10494), OP€NING

new horizons for the understanding and validation of chemical kinetic reaction mechanisms.
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Several jet-stirred reactor (JSR) geometries have been used (spherical, hemispherical, toroidal,
near-conical), but the most popular design is a spherical reactor of less than 50 cm?3. This technique
potentially allows operation over a wide range of residence time (from few milliseconds to several
seconds), depending on the reactor geometry (pavid, R. and D. Matras, Can. J. Chem. Eng., 1975. 53(3): p. 297-300).
Temperature homogeneity is improved through preheating to a temperature close to the reactor
operating temperature (Dagaut, P. et al., J. Phys. E-Sci. Instr., 1986. 19(3): p. 207-209; Rota, R. et al., Chem Eng Sci, 1994. 49(24A): p. 4211-4221).

Composition homogeneity was shown to be easier to achieve.

Picture of a fused-silica JSR used at CNRS Orléans. Stirring is provided by 4 injectors. With this reactor, one can
operate from 40 ms to 3s.
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JSR set-up
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Schematic of the MIT alumina toroidal jet-stirred reactor. Stirring is provided by 32 injectors. From
Nenniger, J.E., A. Kridiotis, J. Chomiak, J.P. Longwell, and A.F. Sarofim, Characterization of a toroidal
well stirred reactor. Symposium (International) on Combustion, 20(1), p. 474, 1985.
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Schematic of the ceramic jet-stirred reactor developed at the University of Washington, Seattle.
Stirring is provided by a single injector. From Westbrook, C.K., W.J. Pitz, M.M. Thornton, and P.C.
Malte, Combustion and Flame, 72(1), p. 47, 1988.

Combustion Institute Summer School, Tsinghua-Princeton June 2025



These reactors have been used to provide useful data for modeling the pyrolysis and oxidation of a
wide range of fuels:
hydrogen, ammonia, carbon monoxide, syngas, hydrocarbons, oxygenates, and complex fuels such

as gasoline, jet-fuels, Diesel-fuels, synthetic fuels, and biodiesel.

An example of such results is given next for the oxidation of a conventional jet A-1and 2 synthetic

jet-fuels (pagaut, P. et al, CNF, 2014. 161(3): p. 835-847).
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(a) (b)
Comparison of experimental data obtained from the JSR oxidation of (a) Jet A-1 (closed symbols) and
GtL (open symbols) and (b) CtL (closed symbols) and GtL jet fuel (open symbols) at ¢ = 1.0, 10 bar,
and a mean residence time of 1 s. From Dagaut, P., CNF, 2014, 161(3), p. 840.
These data show differences in terms of reactivity and formation of intermediate products that can be
explained through detailed kinetic modeling (pagaut, P. et al., CNF, 2014. 161(3): p. 835-847; CST, 2014. 186(10-11): p. 1275-

1283; GT2015-42004 in ASME Turbo Expo 2015; CST 2016. 188(11-12): p. 1705-1718;, PROCI, 2017. 36(1): p. 433-440).
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Whereas gas chromatography and FTIR spectrometry are usually used in conjunction with small sonic
probes in JSRs experiments to probe the chemistry (Herbinet, O. and G. Dayma, in Cleaner Combustion: Developing Detailed
Chemical Kinetic Models, 2013, Springer-Verlag, London), molecular-beam mass spectrometry and tunable synchrotron
VUV photoionization have been introduced recently, allowing deeper investigations of combustion
chemistry (Battin-Leclerc, F. et al., PROCI, 2011. 33(1): p. 325-331; Moshammer, K. et al., J. Phys. Chem. A, 2015. 119(28): p. 7361-7374; Wang,

Z. etal., PNAS, 2017. 114(50): p. 13102-13107).

Recent results have been obtained through the combination of JSRs and high resolution mass
spectrometry (Photoionization-MBMS and APCI-Orbitrap MS). They demonstrate that currently
accepted reaction schemes for hydrocarbons oxidation are missing reaction pathways leading to the

formation of highly oxygenated molecules.

The inclusion of such reactions and products in kinetic scheme could influence significantly model

predictions (wang, z. et al., PNAS, 2017. 114(50): p. 13102-13107).
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Mass spectra of intermediates with the molecular formula of C7H100Ox (x=0—4). (a) and (b) are for JSR-
1 PI-MBMS measurements at T= 630 K and 600 K, respectively. Photon energy is 9.6 eV. (c) is for
JSR-2 APCI-OTMS measurements at 535 K. (d) is for CFR engine APCI-OTMS measurements. From
Wang, Z.D. et al., Combustion and Flame, 187, Supporting information, p.S5, 2018.
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Quantitative measurements using cavity ring-down spectroscopy (CRDS) in the near-IR of HO2 and
H>O. were reported recently (pjeniche, M. et al., JACS, 2014. 136(47): p. 16689-16694; Le Tan, N.L. et al., Fuel, 2015. 158: p. 248-252).
The gas mixtures were sampled with a wide angle fused silica nozzle, the tip being located 5 mm

inside the reactor. The CRDS cell was kept at low-P (0.3 to 10 mbar), while operating the JSR at 1

atm.
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HO:2 concentration profile measured by CRDS during the oxidation of 5000ppm of dimethyl ether in a
JSR at an equivalence ratio of 0.5 and a mean residence time of 1.5s. The data (symbols) are
compared to simulations using three literature mechanisms. From Le Tan, N.L., M. Djehiche, C.D.
Jain, P. Dagaut, and G. Dayma,. Fuel, 158, p. 250, 2015.
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JSR and PFR have been combined at MIT(Lam, F.w. et al., Symp. (Int.) Combust., 1989. 22(1): p. 323-332) t0 allow
probing combustion chemistry over a wider range of residence times. The original design was further
modified at NIST by Lenhert and Manzello
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Schematic of the NIST jet-stirred reactor/plug-flow reactor assembly inspired from an earlier MIT
design(Lam, F.w. et al., Symp. (Int) Combust., 1989. 22(1): p. 323-332). From Lenhert, D.B. and S.L. Manzello, Proc.
Combust. Inst., 32(1), p. 658, 2009.
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Both PFRs and JSRs can be pressurized (Rasmussen, C.L. et al., IJCK, 2008. 40(8): p. 454-480; Allen, M.T. et al., IJCK, 1995.
27(9): p. 883-909; Dagaut, P. et al., J. Phys. E-Sci. Instr., 1986. 19(3): p. 207-209). Whereas fused-silica reactors are commonly
used, some were built in metal (Lignola, P.G. and E. Reverchon, CST, 1988. 60(4-6): p. 319-333; Ciajolo, A. et al., CST, 1997. 123(n): p.
49-61; Harper, M.R. et al., CNF, 2011. 158(1): p. 16-41; Wada, T. et al,. CTM, 2013. 17(5): p. 906-936) and refractory materials (e.g.,
ceramic or alumina) (Westbrook, C.K. etal., CNF, 1988. 72(1): p. 45-62; Bilbao, R. et al., Proc.. Ind. & Eng. Chem. Res., 1994. 33(11): p.
2846-2852). Whereas fused-silica is generally considered chemically inert in combustion studies, other

materials such as metals have catalytic activity that cannot be ignored.

Schematic of the Ghent University Incoloy 800HT tubular flow reactor. From Harper, M.R., K.M. Van Geem, S.P.
Pyl, G.B. Marin, and W.H. Green, Comprehensive reaction mechanism for n-butanol pyrolysis and combustion.
Combustion and Flame, 158(1), p. 18, 2011.

Combustion Institute Summer School, Tsinghua-Princeton June 2025 92



Flow reactors advantages:

Operating temperature range and the possibility to investigate pyrolysis to oxidation, whereas flame
studies are much more limited.

Reactors are particularly useful for gaining insights into reaction products and intermediates through
the use of advanced detection and/or quantification techniques.

Numerous analytical techniques are used after gas sampling achieved using a range of probes for
stopping chemical reactions and transferring a chemical sample to the appropriate analyzers. Also,
one should be aware of possible complications such as surface reactions.

Flow reactors disadvantages:

Can operate over limited temperature, pressure, and residence time ranges. This is due to material
range of use and reachable flow rates.

Experiments need much larger fuel quantities compared to shock-tube and RCM experiments. The
quantification of intermediate species by photoionization remains limited due to unknown

photoionization efficiency difficult to compute using current theoretical methods.
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3.2 Ignition data from PFR

Ignition delays can also be determined using PFRs. Recently an experimental setup was designed for
this purpose (wada, T. et al.,. CTM, 2013. 17(5): p. 906-936). The 1st-stage ignition is observed as a temperature
increase of a few degrees in the reactor. After the first-ignition, strong heat loss to the reactor wall
reduces the temperature and stops chemical reactions. The 1st-stage ignition is determined based on

the distance between fuel injection and the location of the first T-rise and the flow rate in the reactor.
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Schematic of the Aachen University stainless steel laminar tubular flow reactor. From Cai, L.M., A. Sudholt, D.J.
Lee, F.N. Egolfopoulos, H. Pitsch, C.K. Westbrook, and S.M. Sarathy, Combustion and Flame, 161(3), p. 802,
2014.
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This set-up was successfully used for measuring first-stage ignition delays of biofuels:

10000 - - - . : .
DBE/air, 1 at

_ 1000 ¢ .

£

o

l-_i

100 } ]
1.7 1.8 1.9 2 2.1 2.2
1000/T K ']

Ignition delay times of dibutyl ether/air mixtures at 1 atm. From Cai, L.M., A. Sudholt, D.J. Lee, F.N.
Egolfopoulos, H. Pitsch, C.K. Westbrook, and S.M. Sarathy. Combustion and Flame, 161(3), p. 802,

2014.
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4. Flames
Laminar flames are used to obtain both global (laminar burning velocity) and detailed (spatial

speciation or flame structure) data usable for validating kinetic models.

Flame experiments are currently performed over a wide range of pressure, from ca.0.04 to 60 bar.

Burning velocities have been obtained from ca. 0.1 to 60 bar whereas flame structures are available

up to ca. 10 bar.

Major improvements of the methods have been made over the years, allowing the acquisition of very
valuable data for kinetic modelers over a very wide range of conditions and for many fuels (ranzi E. et al,

PECS, 2012. 38(4): p. 468-501; Egolfopoulos, F.N. et al., PECS, 2014. 43: p. 36-67).
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4.1 Burning velocities

The laminar flame speed is defined as the propagation speed of a steady, laminar, one-dimensional,

planar, stretch-free, and adiabatic flame.

It is an important fundamental property of a flammable mixture, being a measure of its reactivity,

diffusivity, and exothermicity.

It constitutes an important validation target for kinetic models and a key parameter in turbulent

combustion.
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Burning velocity can be extracted from a range of experimental configurations, e.g., soap bubble
method, flames in tubes, flat flame burner method, conical flames (Bunsen type), heat flux method,

spherical flames in constant volume chamber, and stagnation flame/opposed-flow method:

Determination of the burning velocity S, by applying the cone angle method (S.=V. sin a).

From Mzé Ahmed, A., P. Dagaut, K. Hadj-Ali, G. Dayma, T. Kick, J. Herbst, T. Kathrotia, M. Braun-
Unkhoff, J. Herzler, C. Naumann, and U. Riedel, The Oxidation of a Coal-to-Liquid Synthetic Jet Fuel:
Experimental and Chemical Kinetic Modeling Study. Energy & Fuels, 26(10), p. 6072, 2012.
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Spherical flames in constant volume chamber:

0 ms 3.3 ms 5ms 6.7 ms 8.3 ms 10 ms

Shadowgraphs of the temporal evolution of an ethyl propanoate/air flame front at P = 1 bar, T, = 423
K and ¢@= 0.9. The temporal increase of the flame radius is used to compute the stretched laminar
burning velocity. The unstretched burning velocity is obtained after extrapolation to zero-stretch using
proposed methods in the literature.

From Dayma, G., F. Halter, F. Foucher, C. Mounaim-Rousselle, and P. Dagaut, Laminar Burning Velocities of C(4)-C(7) Ethyl
Esters in a Spherical Combustion Chamber: Experimental and Detailed Kinetic Modeling. Energy & Fuels, 26(11), p. 6670, 2012.
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Nowadays spherical flames in constant volume chamber and stagnation flame/opposed-flow method
are the most widely used.

They have been reviewed recently (Ranziet al. PECS, 2012. 38(4): p. 468-501 and Egolfopoulos et al. PECS, 2014. 43: p. 36-67).
High pressure and temperature conditions are hardly reachable using Bunsen flames, counter-flow
flames or heat flux burner. Most of the results reported at elevated pressures were obtained with
spherical expanding flames. One limitation of this method comes from the fact that the spherical flame
surface is changing during propagation inducing stretch effects which must be accounted for using

extrapolation methods.

Until the work of Wu and Law (symp. (int) combust., 1985. 20(1): p. 1941-1949), undetermined stretch effects led to
lots of scatter in measurements.

Significant reduction of uncertainty on flame speed measurements has resulted from stretch
correction, as outlined by Law (aiaa Joumal, 2012. 50(1): p. 19-36) for methane-air flames for which the £25
cm/s scatter got reduced to ca. 2 cm/s recently by considering the non-linear nature of stretch on
burning velocity (kelley, A.P. and C.K. Law, CNF, 2009. 156(9): p. 1844-1851; Halter, F. et al., CNF, 2010. 157(10): p. 1825-1832). With

such low uncertainties, burning velocities are very valuable for kinetic models assessment.
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Fuel+Oxidizer

Premixed
Flame

Premixed
Flame

4

Fuel+Oxidizer

Picture of twin stagnation flames (left) and schematic view (right).

From Egolfopoulos, F.N., N. Hansen, Y. Ju, K. Kohse-Hoinghaus, C.K. Law, and F. Qi, Advances and challenges in laminar flame
experiments and implications for combustion chemistry. Progress in Energy and Combustion Science, 43, p. 49, 2014.
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Burning velocities for simple to complex fuels have been published. An example of such results is

given here for the combustion of synthetic jet-fuels.

100 v Y v T v r T : v
" 1
E 80 =y o
O -
2 60 4 -
O
O : 1
)
> 409 experiment simulation =
CE” { 4 GiL (surrogate) === GtL (surrogate)
E 20 = GiL o
8 | * JetA-
o GtL (Vukadinovic et al.)
0 v T v ] v 1 L T v
0.6 0.8 1.0 12 1.4 1.6

equivalence ratio ¢

Comparison of measured (symbols) and predicted laminar burning velocities of synthetic and
conventional jet-fuel-air mixtures at Tu =473 K and p = 1bar.

From Dagaut, P., F. Karsenty, G. Dayma, P. Diévart, K. Hadj-Ali, A. Mzé-Ahmed, M. Braun-Unkhoff, J. Herzler, T. Kathrotia, T.
Kick, C. Naumann, U. Riedel, and L. Thomas, Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet
fuel. Combustion and Flame, 161(3), p. 846, 2014.
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4.2 Species measurements.

The measurement of flames structure has a long history (Eitenton, G.C., J. Chem. Phys., 1947. 15(7): p. 455-481; Fristrom,
R.M. and A.A. Westenberg, Flame Structure. 1st Ed. 1965: McGraw-Hill. 424). Nowadays, flame structures mostly come from

two methods: low-pressure premixed flat flames and stagnation flames.

These techniques have been reviewed recently (Egoifopoulos, F.N. et al., PECS, 2014. 43: p. 36-67).
Samples are extracted from the flame using a probe and sent to analyzers (gas chromatography,
mass spectrometry).

Molecular beam-mass spectrometry has been used extensively.

More recently, photoionization by synchrotron-sourced vacuum-ultraviolet radiation was employed,

generating a large body of kinetic data unreachable by other techniques (Egoifopouios, F.N. et al., PECS, 2014. 43:

p. 36-67; Qi, F. et al., Rev. Sci. Instr., 2006. 77(8): p. 84101; Qi, F., PROCI, 2013. 34(1): p. 33-63; Hansen, N. et al., PECS, 2009. 35(2): p. 168-191;
Cool, T.A. et al., J. Chem. Phys., 2003. 119(16): p. 8356-8365; Rev. Sci. Instr., 2005. 76(9); Westmoreland, P.R. et al., Comb. Expl. Shock Waves, 2006.

42(6): p. 672-677):
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MCP detector

Flight tube

TOF-MS

McKenna burner

ALS-VUV
beam
Quartz probe

Skimmer
Molecular beam

T—Turbo pumps — 2

Schematic of a low-pressure McKenna burner experimental set-up. Gases from the flame are
sampled through a fused-silica probe (picture) into a time-of-flight mass spectrometer where
chemicals are photo-ionized by synchrotron-generated vacuume-ultraviolet radiation.

From Taatjes, C.A. et al. Physical Chemistry Chemical Physics, 10(1), p. 22, 2008.
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Fused-silica probe can cause significant perturbations to the flame, making difficult to model and
interpret the experiments, as demonstrated in a recent study by Hansen et al. (cnF, 2017. 181: p. 214-224, Pci

2019, 37, p.1401 ).

unperturbed T profile

15 sampling probe
® 4mm B 7mm A 22mm

Temperature / K

45" sampling probe
O 4mm O 7mm 4 22 mm

'8 10 12 14 16 18 20 22 24

Distance from Burner/ mm

o
%
o

Temperature along the centerline for 3 different sampling positions near 4, 7, and 22 mm for 2
different cone designs. https://doi.org/10.1016/j.proci.2018.05.034
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Also, the use of a thermocouple for measuring temperature profiles in the flame can alter the flow
fields and temperature profiles (skovorodko, P.A. et al, CTM, 2013. 17(1): p. 1-24; CNF, 2012. 159(3): p. 1009-1015), although

these effects are small compared to sampling probe perturbations.

Nevertheless, a wide range of fuels have been studied in flames.

Examples of concentration profiles of Co—C14 species measured in low-pressure premixed flames of

toluene next.
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Experimental (symbols) and simulated (lines) mole fraction profiles of acetylene (C2H>), propargyl
(CsHs), vinylacetylene (C4H4), cyclopentadienyl (CsHs), benzene (A1), benzyl (A1CH>), phenyl-

acetylene (A1C2H), ethylbenzene (A1C2Hs), indenyl (CoH?), indene (CoHs), naphthalene (A2) and
phenanthrene (A3) in the premixed flames of toluene at five equivalence ratios (0.75 to 1.75). The

data were obtained by MB-MS with photoionization by synchrotron-sourced vacuum-UV
radiation. From Yuan, W.et al.,CNF 162(1), p. 36, 2015.
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25004 Cz2H4/Oz/Ar flame, ¢=1.0
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Temperature profiles in the present ethylene/O2/Ar flame.
Open diamonds and open circles represent the Tpert and Tunpert
profiles, respectively. Shadows represent the scaled Tpert
profiles considering the uncertainties of maximum Tpert Values.
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CH,CH,OH C,H; C,H;
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C2HsO0H (ppm)

Distance from the burner (mm)
Measured (symbol) and predicted (lines) mole fraction profiles
of C2Hs0OO0H in the present ethylene/O2/Ar flame. The solid
and dashed lines represent the predicted results with the Tpert
and Tunpert profiles, respectively. Shadows represent the
predicted results considering the uncertainties of Tpert.

ROP analysis with the Hashemi model* by using the Tpert profile
at(@a)d=0mm (T =555 K) and (b) d = 0.98 mm (T = 755 K).

*H. Hashemi, J.G. Jacobsen, C.T. Rasmussen, J.M. Christensen, P.
Glarborg, S. Gersen, M. van Essen, H.B. Levinsky, S.J. Klippenstein,
High-pressure oxidation of ethane, Combust. Flame 182 (2017) 150-166.

From Xiaoyuan Zhang et al. Comb. Flame 204 (2019) 260-267

Combustion Institute Summer School, Tsinghua-Princeton June 2025 108



Whereas time-of-flight mass spectrometry with photoionization by synchrotron-generated vacuum-
ultraviolet radiation are very useful for detecting intermediate species, the differentiation between

isomers can be difficult when photoionization energies are too close.

Dias et al. (csT, 2004. 176(9): p. 1419-1435) have introduced a useful method consisting of a conventional El-
MBMS setup where a portion of the sample is sent to a GC-MS through a capillary, allowing
separation of isomers of stable products that could not be differentiated based on their ionization

energies or mass.

Other workers also combined EI-MBMS measurements with GC-MS measurements to get better

characterization of isomers (Bourgeois, N. et al., PROCI, 2017. 36(1): p. 383-391).
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5. Some conclusions and perspectives

The most common experiments for kinetic mechanism assessment have been presented. It was
shown that shock-tube and RCM are very useful for determining fuel ignition properties but also to
measure chemical products. Recent advances in CFD modeling of RCM (Bourgeois, N. et al., PROCI, 2017. 36(1):
p. 383-391; CNF, 2018. 189: p. 225-239) are expected to facilitate the use of RCM ignition data for kinetic model
validation. Tubular flow reactors and jet-stirred reactors are commonly used. Their coupling with
advanced analytical techniques is able to provide unique data for kinetic models assessment.
However, current limitations due to unknown photoionization efficiency for many intermediates must
be addressed, possibly through the use of advanced theoretical methods. Flames can also provide
valuable data in terms of burning velocities and speciation, although, limiting perturbations by

conventional large sampling probes remains a major challenge for future work.

Nomenclature: APCI-OTMS: Atmospheric pressure chemical ionization-Orbitrap® mass spectrometry; CFD: Computational fluid dynamics; CFR:
Cooperative Fuel Research; CRDS: Cavity ring-down spectroscopy; CtL: Coal-to-liquid; EI-MBMS: Electron ionization molecular beam-mass
spectrometry; FTIR: Fourier-transform infrared; GC: Gas chromatography, GC-MS: Gas chromatography-mass spectrometry; GtL: Gas-to-liquid; IR:
Infrared; JSR: Jet-stirred reactor; PFR: Plug-flow reactor; PI-MBMS: Photoionization molecular beam-mass spectrometry; PSR: Perfectly-stirred reactor;
RCM: Rapid compression machine; ST: Shock-tube; T,: temperature of fresh gas; UV: Ultraviolet; VUV: Vacuum ultraviolet; ¢: equivalence ratio.
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Summary

Shock-tubes and rapid compression machines. Shock-tube and RCM are very useful for determining
fuel ignition properties but also to measure chemical products.

Flow reactors: Tubular Flow Reactors and Stirred Reactors. Commonly used. Their coupling with
classical (GC, MS, FTIR) and advanced analytical techniques is able to provide unique data for kinetic
models’ assessment.

Flames. They provide valuable data in terms of burning velocity and speciation. Beware of probe
perturbations.
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Part 3
MODELING
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Modeling: General information

Need accurate kinetics, thermochemistry, and transport data

Use inputs from theory and measurements and also estimations by analogy, tabulations

Need accurate data that are used to constrain the model
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Modeling

Chemkin computer package.

Kinetic reaction mechanism with modified Arrhenius equation, k= A T? exp (-E/RT); k(P,T).

Reaction mechanism with strong hierarchical structure.

The core-mechanism is H2/O2 (H, O, OH, HO2, H202, O2, O3, H>).
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Modeling: Hierarchical structure of chemical kinetic schemes

Structure hiérarchisée des mécanismes détaillés

Combustion Institute Summer School, Tsinghua-Princeton June 2025 115



Modeling: Size of chemical kinetic schemes

Number of reactions, |

—

o
&

i |

-

o
w

“

|=5K

.* Methyl
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Number of species, K

from T.F. Lu, C.K. Law, PECS 35 (2009) 192-215
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Modeling: reaction scheme

REACTIONS k=A*T**n*exp(-E/RT)
Alcc,mole,s n E/cal/mol Ref

H+ H+ M= H2+ M 7.310E+17 -1.00 0.0 !(BAULCH 76)
O+ O+ M= 02+ M 1.140E+17 -1.00 0.0 !(BAULCH 76)
O+ H+ M= OH+ M 6.200E+16 -0.60 0.0 !(DIXON-LEWIS 81)

H2+ 02 = OH+ OH 1.700E+13 0.00 47780.0 !(MILLER 77)
O+ H2 = OH+ H 3.870E+04 2.70 6260.0 !GRI
H+ 02 = OH+ O 4.400E+14 -0.1216812.0 !Nicolle 2004

H+ 02+ M= HO2+ M 8.000E+17 -0.80 0.0 !(WARNATZ 84)
H+ OH+ M= H20+ M 8.615E+21 -2.00 0.0 !(BAULCH 76)
H2+ OH = H20+ H 2.161E+08 1.51 3430.0 !(MICHAEL 88)
H20+ O OH+ OH 1.500E+10 1.1417260.0 !(WARNATZ 84)
HO2+ OH = H20+ 02 2.890E+13 0.00 -497.0 !(KEYSER 88)

HO2+ O = OH+ 02 1.810E+13 0.00 -400.0 !(JPL 87-41)

H+ HO2 = H2+ 02 4.280E+13 0.00 1411.0 !(94BAU/COB)
H+ HO2 = OH+ OH 1.690E+14 0.00 874.0 !(94BAU/COB)
H+ HO2 = H20+ O 3.010E+13 0.00 1721.0 !(BAULCH 92)

HO2+ HO2 =H202+ 02 4.075E+02 3.32 1979.0 !(HIPPLER 90)
OH +OH (+M)= H202 (+M) 7.224E+13 -0.37 0.0  !(94BAU/COB)
H202+ OH = HO2+ H20 5.800E+14 0.00 9557.0 !(92HIP/TRO)

H202+ H = HO2+ H2 1.700E+12 0.00 3750.0 !(BAULCH 72)
H202+ H = H20+ OH 1.000E+13 0.00 3590.0 !(WARNATZ 84)
H202+ O = HO2+ OH 2.800E+13 0.00 6400.0 !(ALBERS 71)
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Modeling: thermochemistry

H

ELEMENT COMPOSITION

H 10

300.00

Phase LOWER-T HIGHER-T MID-T
5000.00
0.25000000E+01 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+0O0
0.25471600E+05-0.46000000E+00 0.25000000E+01 0.00000000E+00 0.00000000E+0O0

0.00000000E+00 0.00000000E+00 0.25471600E+05-0.46000000E+00

H2

H 20

300.00

5000.00
0.29914200E+01 0.70006000E-03-0.56340000E-07-0.92300000E-11 0.15800000E-14
-0.83500000E+03-0.13550000E+01 0.32981200E+01 0.82494000E-03-0.81430000E-06

-0.94750000E-10 0.41349000E-12-0.10125000E+04-0.32940000E+01

)

o 10

300.00

5000.00
0.25420600E+01-0.27550000E-04-0.31000000E-08 0.45500000E-11-0.44000000E-15
0.29230800E+05 0.49200000E+01 0.29464300E+01-0.16381700E-02 0.24210300E-05

-0.16028400E-08 0.38907000E-12 0.29147600E+05 0.29640000E+01

02

o) 20

300.00

5000.00
0.36975800E+01 0.61352000E-03-0.12588000E-06 0.17750000E-10-0.11400000E-14
-0.12339000E+04 0.31890000E+01 0.32129400E+01 0.11274900E-02-0.57562000E-06

0.13138800E-08-0.87686000E-12-0.10052000E+04 0.60350000E+01

(a,--a,) to calculate thermodynamics over the range 1000 - 5000 K and (a,,..a,, ) over the range 300 - 1000 K.

a, + az,kT + a3,kT2 + a4,kT3 + aikT4 y

2

T
:@ka+aMT+aM7;+@*

G"=H'-TS'} AG'=G"pos ~Glres =—RTIn(K,); K=

T3 T4
j;+%*jr+%x

for

k

rev

T2

-

P
RT

H T T3 T4
RT =q, ta,, E"’ a; ?"’ a, T"’ a;

jzvprod “ZVyeact
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Modeling: transport

SPECIES STRUCTURE L-J POTENTIAL WELL L-J COLLISION DIAM. DIPOLE MOMENT POLARIZABILITY ROTATIONAL RELAX COLL NBR
elk (o) M a Z (ot

0 0 80.000 2.750 0.000 0.000 0.000

02 1 107.400 3.458 0.000 1.600 3.800

OH 1 80.000 2.750 0.000 0.000 0.000

H20 2 572.400 2.605 1.844 0.000 4.000

H202 2 107.400 3.458 0.000 0.000 3.800

Structure: 0= atom; 1= linear; 2= non-linear

Very good source for the transport properties and their estimates in R. C. Reid, R. C., J. M., Prausnitz,
B. E., Poling The properties of Gases and liquids, 4th ed, McGraw-Hill, New York, 1987.

CHEMKIN details : R. J. Kee, J. Warnatz, M. E. Coltrin, and J. A. Miller, A FORTRAN computer code

package for the evaluation of gas-phase, multicomponent transport properties, Sandia Report 86-
8240.

Combustion Institute Summer School, Tsinghua-Princeton June 2025 119



Rate constants measurements

Example: OH + dimethyl ether

OH radicals produced by photolysis of H-O and monitored by fluorescence at 310 nm
At low radical concentrations, the OH fluorescence is directly proportional to the OH concentration and
the first-order rate expression can be integrated to obtain
Fi = Fio exp{-k'*(t - to)} = Fio exp{-(ko + ki[R]) (t - to)}
where Fi, and Fy are the OH radical fluorescence intensities at times t and to, respectively,
k'stis the total first-order decay rate,
ko is the first-order rate constant for OH removal in the absence of reactant (attributed to diffusion out

of the viewing zone and reaction with possible impurities in the diluent gas)

ks, is the bimolecular rate constant for the reaction of OH with the reactant, R.
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Rate constants measurements: experimental set-up
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Rate constants measurements
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Values of k't are determined for various reactant concentrations by non-linear least-squares

exponential analysis of the experimental OH fluorescence decay curves and ranged from 20-2000 s™'.
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Rate constants measurements

1000
800
I
)
~ 600
~
|
- 400
17
S

200

O 2 4 6 8 10
P (dimethylether), mtorr

Figurel. Plotof(£™ — k,)vs.dimethylether concentration at 296 K, (/) 25 torr,
(L) 37.5 torr, (O) 50 torr. The line represents a linear least-squares analysis.

Wallington, Liu, Dagaut, Kurylo, Int. J. Chem. Kinet. 20 (1988) 41-49

k'st — ko = f( [DME]); slope => k,

Experiments are repeated at several temperatures to obtain the variation of the rate constant versus

temperature.
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Rate constants measurements

Example: OH+neopentane

1000 -
7086 K 618 K 431K 360 K
P 600K 2 Q
K ‘s
goo{ 99K, 7
¢ f,’
800+ / ’. A )
iw . )
l ¥
x 400_' - + 4, ”I
2 >
200 iAo
W
0 T T T T T T 1
0 1 2 3 4 5 &

[CH,,] X 10" (molecule/cm®)

Fic. 2. First-order decay constant k' as a function
of [CsH,,) at various experimental temperatures.

Tully et al., Twentieth Symposium (International) on Combustion/The Combustion Institute, 1984/pp. 715-721
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Modeling: Temperature dependencies of elementary reactions

In 1889, Svante Arrhenius proposed the Arrhenius equation from direct observations of the plots of
rate constants vs. temperature: k=A exp(-Ea/RT)

Later, modified Arrhenius expression: k=A T" exp(—Ea/RT)

1.3 CO+OH — CO, + H

|
—
[e—
e |

|
O

log(k .-"::rnsmulecule_ls_l}

| |

N L
|_."-.'|' | ] b2 b3 | ]
s =] L Lad —

0.3 .5 1.3 1.8 2.2
100O/T (K1)
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log(k / cm® molecule™ s™)

-11

-12

-13

HO,+ HO, > H,0,+ 0,

T/K

E  Troe 1969 (0.78-2.4 bar Ar)
* Hochanadel et al. 1972 (1 bar H,, He, Ar)
*
L 4
Paukert and Johnston 1972 (1 bar He) ® Sander 1984 (1.3 mbar He)

~— - Vardanyan et al. 1974 (1.16 bar)

+ Hamilton and Lii 1977 (2 bar H,) E Takacs and Howard 1984 (1.3-9 mbar He)

2 ® Rozenschtein et al. 1984 (2.8-33 mbar He)

® (B;U”°WZ era’- 197199%5 ;"Sba'bA')N O Cattel et al. 1986 (3.2 mbar N,)

« G°Xha“ “';0:::79 1 b( Nm arN;) m  Kurylo et al. 1986 (33-790 mbar N,, O,)

X ”ra am etal. (1barN,) O Takacs and Howard 1986 (1.3-8 mbar He)

* Liietal 1979 (1.6 bar H,) A McAdam etal. 1987 (530 mbar N,)

* 1““‘?‘ and \év;\llklzson 19:27(2.31ngbarHHe) A Andersson et al. 1988 (1 bar N,)

; Hsui |yadan| t a/ jg;(;a1 . F(I arHy) v Lightfoot et al. 1988 (1 bar N.,)

o ochanadel etar (1 bar He) v Hippler et al. 1990 (0.99 bar Ar)

Burrows et al. 1981 (1 bar H,, Ar, N,) Lightfoot et al. 1990 (1 bar N

e Liietal. 1981 (2 bar H,) — — Lightfoot et al. (1barN,)

A Patrick and Pilling 1982 (1 bar N,) ¢ Crowley etal. 1991 (1 bar N,)

B <& Maricq and Szente 1994 (260 mbar air)

* S'anderle'tal. 1982.(0'13 0.92 bar He, Ar, N,, O,, SFy) @ Sehested et al. 1997 (0.99 bar SF,)

* Simonaitis and Heicklen 1982 (1 bar N,) © Taatjes and Oh 1997 (66 mbqr Ar)
e=— -a Thrush and Tyndall 1982a (9-26 mbar O,)

e Thrush and Tyndall 1982b (8-17 mbar O,) — This Evaluation

1 1 1 1
1 2 3 4
1037 /K"
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log(k / cm® molecule™ s™)

OH + HO, > H,0 + O,

T/K
1000 500 300 200
T T T
+
T H
?\
o0 | i
] A
\ * f 4
b a ©
L 4 A Ox
AL *
S A
?
8 |
s ¥
=
<>
@ Friswell and Sutton 1972 ® Thrush and Wilkinson 1981
+ Hochanadel et al. 1972 - Braun et al. 1982
®&—-® Peeters and Mahne.n 1973 A  DeMore et al. 1982
DeMore and Tschuikow-Roux 1974 - Sridharan et al.1982
*  Burrows etal. 1977 ® Temps and Wagner 1982
o—-0 Chang and Kaufaman 1978 O Rozenshtein et al. 1984
* Hack etal 1978 A Sridharan et al.1984
*  Burrows etal. 1979 A Dransfied and Wagner 1987
4— -4 DeMore 1979 v Keyser 1988
I Hochanadel et al. 1980 o—-o Goodings and Hayhurst 1988
A Liietal. 1980 v Schwab et al. 1989
Burrows et al. 1981 & Hippleretal 1990
* Coxetal 1981 <& Hippler etal. 1995
* Keyser 1981
L Kurylo et al. 1981 —— This Evaluation
| | |
1 2 4 5
1037 /K
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Modeling: Pressure dependencies

[a—
]
—
]
[
l

k, (cm® molecule™ s™)
S
[
l

10—12 I I I | I I I
1013 10% 10% 10! 107 10" 10 102 10!

[M]_. (molecule cm™)
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log(k / cm® molecule™ s™)

CH, + CH, (+ Ar) > C,H, (+ Ar)

-10.0

-10.5 -

200 K

300 K

-11.0 |

X+ ¥ >Dp

-11.5 -

*

577 K

SCeoenn

Glanzer etal. 1977 (T = 1350 K)
Hippler et al. 1984 (T = 296 K)
Slagle et al. 1988 (T = 296 K)
MacPherson et al. 1985 and
Slagle et al. 1988 (T = 296 K)
Slagle et al. 1988 (T = 577 K)
MacPherson et al. 1985 and
Slagle et al. 1988 (T = 577 K)
Slagle et al. 1988 (T = 906 K)
MacPherson et al. 1985 and
Slagle et al. 1988 (T = 906 K)
Walter et al. 1990 (T = 200 K)
Walter et al. 1990 (T = 300 K)
Hwang et al. 1990 (T = 1200 K)
Hwang et al. 1990 (T = 1400 K)
Du et al. 1996 (T = 1350 K)

Du etal. 1996 (T = 1523 K)

This Evaluation

-12.0 ‘ ‘ :
15 16 17 18 19

log([Ar] / molecule cm™)

20 21

22
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Modeling: Pressure dependencies
Lindemann-Hinshelwood (1/2)
Assume every collision leads to stabilization (M: collision partner)
A+M > A*+M K1(T)
Ax+M —>A+M ko(T)
A* — product K3(T)
The quasi-steady state approximation (QSSA) for A*:  d[A*]/dt=0
Steady state for [A*]: [A*] =k1 [A] [M]/ (k2 [M] + k3)
Rate= k3 [A*] = k3 k1 [A] [M]/(k2[M] + k3) = kuni [A]

High Pressure limit ([M] — «, k2[M] >> k3):
Rate= k3 [A*] = ks k1 [A] MY/ (kofM] +K3) = Kkuni [A]
Rate= k1 ks [A] / k2 = Kuni [A] => kuni = kK1 K3/ k2
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Modeling: Pressure dependencies

Lindemann-Hinshelwood (2/2)

Steady state for [A*]: [A*] =k1 [A] [M] / (k2 [M] + k3)
Rate= k3 [A*] = ks k1 [A] [M]/(k2[M] + k3) = Kuni [A]

Low Pressure limit ((M] — 0, k2 [M] <<k3s):

Rate= k3 [A*] = ka k1 [A] [M]/(kofM] + k3) = Kkuni [A]
Rate= k1 [A] [M] = ko [A]; => kuni = k1 [M]
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f [M]:[M]c X= [M}[M]c
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Troe fitting: improved fit (LH too far from exp.)

k| Mk~
k(T,p) = 000[ ]

k™ + k| M]

lo F‘em

log, F = —— 810 L', _

+

| N—d(log,(p*)+c)_

d=0.14

Pt = k[ M]/k"
c=-04-0.67 loglo Fcenr
N = 075 — 1 27 lOgIO Fcenf

F.,.=(1—a)exp(~T/T"")+ aexp(-T/T") +exp(-T""/T)

cent ~
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Troe Formalism in CHEMKIN format

F.,.=(1—a)exp(-T/T"")+ aexp(-T/T") +exp(~T"" /T)

CHEMKIN uses 3- or 4-Troe parameters (in the order:a, T, T, T )

Example:
OH + OH (+M) = H202 (+M) 7.224E+13 -0.37 0.0 !(94BAU/COB) High-Pres rate cst
LOW / 2.211E+19 -0.76 0.0/ low-P rate cst
TROE /0.5 1.0E+08 1.0e-06/ a, T , T (T notused here)
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Modeling: Kinetic analyses

1-Reaction pathways
How reactions proceed?
How reactants and intermediates are consumed?

How products are formed?

ROP(Product1):
reaction rate (R1)/(sum of reaction rates yielding Product1)
ROC(Product1):

reaction rate (R1)/(sum of reaction rates consuming Product1)

Net rate of production= (total rate of production) — (total rate of consumption)
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What are the important routes for NO-reduction?

0.8
0.6 |
0.4
0.2 |
of
02
-0.4 |

0.6 |

'0.8---1I..1.I....1,,, 94

1150 1200 1250 1300 1350 1400
T/K

Two rxns of HCCO with NO

- (94, 0) not counter-balanced to reform NO

- (93, o) counter-balanced by (96) to reform
NO

Normalized NO Rate of Reaction

P Ll

Fig. 3. The influence of temperature on the main reaction paths involved in
the reduction of NO by propane at 1 atm (¢ = 1.25; 7= 0.12 s; 1000 ppm
of NO: 2930 ppm of propane). Reactions: NH + NO = N,O + H (16);
HNO + H = NO + H, (50); NO + HO, = NO, + OH (65); NO + H +
M = HNO +M (67); NO + HCO = HNO + CO (68); NO, + H=
NO + OH (70); CH, + NO = HCN + OH (90); |[HCCO + NO =
HCNO + CO (93} [HCCO + NO = HCN + CO, (94); HCNO + O =
NO + HCO (96);: HCNO + OH = NO + CH,O0 (97).
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How PRF100 reactions pathways are modified by ozone injection?
[O5]=0 [O3]=10 ppm

10 - - - 10

without O, c, H +OH >CBH”,+H 0 CeHyp + O~ CH,, + OH. 10 ppm of O,

8

10 e \E\‘i“ '

-
o
in

/
z z CHig+OH->CH, +H.0
E =
= 10 2
o - 0
g g
Q QO
& e
1077 1075 A CHyg +H->CgH,; +H,
T CBH18+H > CH,. +H,
g CH_+HO —->CH, +H.0O
_ED/” CBH1B+O >CBH1T+OH y g 18 2 S A e
10 L TR TTIT BRI TTT B WA 10_ T R T ITH B AT BT B ST ST ST E T
10° 10° 107 10° 10° 10° 100 10° 10" 10" 10 107 10° 10 10° 107 10 10"
Time [s] Time [s]

Reaction pathway analysis from rates of consumption (at the bottom) for iso-
octane (PRF100) at initial temperature of 800 K, initial pressure of 50 bar
and equivalence ratio of 0.3. From Masurier et al. Energy Fuels 2013, 27, 5495-5505.
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How reactions pathways are modified by ozone injection?

HOOr
[03]=0 ppm | RH (Fuel) 02 ' ﬂ Products
HO’
O‘ *
[03]=10 ppm RH (Fuel) ]_,R 02, M., Products

Early reaction paths involved in neat and ozone-seeded fuel oxidation.
From Masurier et al. Energy Fuels 2013, 27, 5495-5505.
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How reactions pathways are modified by ozone injection?

CHy O3 CHg
ol OH L ol OH
CHg — CH3
HO, < HO2 S—
CHzO | ©2 , 0| CHzO[ ©2
02 O2
—> H — ——> H —
\/ \/
CH»20 —»CH»>0O
OH —» O |OH
H H
HCO O» HCO Oy
cO cO
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2-Brute force method and 1st order sensitivity analyses

What is the impact of a variation of a given parameter (e.g., A-factor, AHr) on the model predictions?
What reactions influence the prediction of the formation/consumption of the product 1?

Initial kK => [product1]o

k*e => [product1]-

k/e =>[product1]-

S= {[product1]ini - [product1]mod} / [product1]ini; e.g., [product1]m.s= conc. after k; x 5:
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Brute force method sensitivity analysis (k/5)

1 2 3 v, (k)
v,(k/5)

H+0,>0H+0

Sensitivity of computed laminar burning velocity of a methane-air flame at 1 bar and T, = 298 K to
reaction kinetics. From Warnatz, J., The structure of laminar alkane-, alkene-, and acetylene flames.
Symposium (International) on Combustion, 18(1), p. 380, 1981.
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2-Brute force method and 1st order sensitivity analyses

What is the impact of a variation of a given parameter (e.g., A-factor, AHr) on the model predictions?

What reactions influence the prediction of the formation/consumption of the product 1?
Initial kK => [product1]o
k*e => [product1]-
k/e =>[product1]-

S= [product1]in/ [product1]mod; €.9., [product1]mes= conc. after k; /5
s= dn; / J;
s’= (8nilni) / (amlm)

where n; is the response of the model and 1 is a model parameter (A-factor, AHy), e.g., si;=
(dcilci) I (0A;j/A;) for conc. of species in reaction j:
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1st order sensitivity analysis

$- 0 C2HsCO+02=C2HsC(0)00
2M5 +U2=Lz2Hs
Bl /- 4.0
CHOCH:C({O)OOH=>CHzCHO+COQz+0OH

CzHs00H=C2Hs0+0OH
CzHs004+HOz=CzHs00H+0:2
CH300H(+M)=CH30+0H(+M)

CzHsCHO+CzHs00=CzHsC O+ C2Hs00H

[| C2H5C(0)00=CH2CH2C(O)O0H
CEHEDD=CEH4+H02“
C2HsCO=Ca2Hs+C0O
2C2Hs00=CH3CHQO+C2Hs0H+02
08 -06 -04 02 00 02 04 06 08
Sensitivity coefficients

Sensitivity analysis of the present model at ¢ = 0.35 (675 K, 1 atm) and ¢= 4.0 (625 K, 1 atm) in JSR

oxidation of propanal. From New insights into propanal oxidation at low temperatures: Experimental and kinetic modeling study.
X. Zhang et al., Proc. Combust. Inst (2019)
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Modeling: Pressure/Temperature dependencies and reaction pathways

Explosion Limits of a ®=1 Ho-O2 Mixture

103 \ 3rdl!:’h.'

1717

Slow reaction

1 I T rrrra

1072

P/mBar

i -

101 a 731 1 m.
% Explosion

—

1 r 1Trrrn

Slow reaction
10° 1

750 800 850
T/K
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Modeling: Pressure dependencies

P/mBar

Explosion Limits of a ®=1 H>-O2 Mixture

10!

H202—>OH+OH

----------S---.-----------.---.-------.--- e

H+®2+M—>H02+M 3

H+02—)OH+O

B i .

DJ H+02—>OH+O

diffuésion D~P 1

H+|‘§|+S—>H2+S H2+02—)H+HC;)2
. | . | : : : . |

750 800 850
T/K
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REACTIONS k=A x T" x exp(-E/RT)

H+ H+ M= H2+ M
O+ O+ M= 02+ M
O+ H+ M= OH+ M
H2+ O2 = OH+ OH
O+ H2 = OH+ H
H+ 02 = OH+ o
H+ 02+ M= HO2+ M
H+ OH+ M= H20+ M
H2+ OH = H20+ H
H20+ O = OH+ OH
HO2+ OH = H20+ 02
HO2+ O = OH+ 02
H+ HO2 = H2+ 02
H+ HO2 = OH+ OH
H+ HO2 = H20+ o

HO2+ HO2 =H202+ 02
OH + OH (+M)= H202 (+M)

H202+ OH = HO2+ H20
H202+ H = HO2+ H2
H202+ H = H20+ OH
H202+ O = HO2+ OH

Alcc,mole,s n

7.310E+17
1.140E+17
6.200E+16
1.700E+13
3.870E+04
4.400E+14
8.000E+17
8.615E+21
2.161E+08
1.500E+10
2.890E+13
1.810E+13
4.280E+13
1.690E+14
3.010E+13
4.075E+02
7.224E+13
5.800E+14
1.700E+12
1.000E+13
2.800E+13

-1.0 0.0
-1.0 0.0
-0.6 0.0
0.0 47780.0
2.7 6260.0
-0.12 16812.0
-0.8 0.0
-2.0 0.0
1.51 3430.0
1.14 17260.0
0.0 -497.0
0.0 -400.0
0.0 1411.0
0.0 874.0
0.0 1721.0
3.32 1979.0
-0.37 0.0
0.0 9557.0
0.0 3750.0
0.0 3590.0
0.0 6400.0

E/cal/mol Ref.

I(BAULCH 76)
I(BAULCH 76)
I(DIXON-LEWIS 81)
I(MILLER 77)
IGRI

INicolle 2004
I(WARNATZ 84)
I(BAULCH 76)
I(MICHAEL 88)
I(WARNATZ 84)
I(KEYSER 88)
I(JPL 87-41)
1(94BAU/COB)
1(94BAU/COB)
I(BAULCH 92)
I(HIPPLER 90)
1(94BAU/COB)
1(92HIP/TRO)
I(BAULCH 72)
I(WARNATZ 84)
I(ALBERS 71)
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Modeling:

Hydrocarbons oxidation

Cool flame High-T

5 1

=

=

& _\ |

=

O

ki/ﬁ \
; . \
! 2
500 ~B50 ~800
Temparatura/kK

Fuel concentration vs. temperature
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Modeling: Multiple cool flames

773
x
|_
673!
+T]!
slow combustion
‘ [l § § I
20 40 60 BO
p, kPa

Ignition diagram of a propane/oxygen (1:1) mixture. The numbers refer, to the number of cool flames
occurring in the respective region. From P.G. Lignola, E. Reverchon, Prog. Energy Combust. Sci., 13
(1987), p. 75
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Modeling

TEMPERATURE

%
W

NITIONS |

Ly

Ignition diagram for fuel concentration within the flammable range. Moving from A to B can yield to

strong ignition
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Modeling

RH
+X¢-XH
Olefin + HO» < O2 M R’ + Olefin
enn 2 > H + Olefin
lA
O2
RH RO>
ROOH < ROy —# RO + RO + 05
¥~ HO2 l‘
0 A/
RO+OH 2 QOOH

/ 02\

Cyclic Ether + OH Olefin + Carbonyl
OOQOOH Compound
l +OH
HOOQ'OOH
oQooH + OH

'

Decomposition «— OQ'O + OH
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Modeling
CH30CH3 +

CH>0O+CH3. €= CH30CHp>.

CH(:){?IT-IZOO.
H

‘CH,OCH,OOH —2 CH50 +
>z}

.OOCH2OCH200H

HOOCH5OCHO +
OCH5>0CHO +

CH>0+OCHO.
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Modeling

Branching reactions: multiplication of the number of active species

Low-T

R + O,—R0O;2; RO2,—QO0O0OH —0,Q00H — >3 radicals

Medium-T
H+ O+ M —-HO+ M; RH+ HO»—R + HO2; H) O+ M — 2 OH + M
HO>+ HO2 — H20>

High-T
H+0,—OH +O0
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Korcek mechanism

y-Ketohydroperoxides decompose to a carbonyl and a carboxylic acid

0 —ctr o
4 /
H=C OH

, X

R —C= ~
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Waddington mechanism

(@
! / "'("Dj_
R_%—C/H Ry R - C—H;C/"\ - —
o< i?f,\“ Yo

- Ut —Ct — Q e RO —RT —

On)+ R-cht + R e
O O
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More reaction pathways at low-T

Example: di-n-propyl ether oxidation
R+ 025 RO2: 5 QOOH
QOOH + O 5 OOQOOH

OO0QOOH S HOOPOOH (alternative H-transfer, not from HC-OOH)

3rd O, addition:
HOOPOOH + 0, S (HO0),POO S (HOO),P’OOH — OH + (HOO)2P’=0 (CsH120¢)

4th O, addition:
(HOO)2P’O0H + 02 5 (HOO):P”’00 S (HOO)3P”O0H — OH + (HOO)3P”=0 (CeH1205)

5th addition ...
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Dipropyl ether oxidation
Reaction pathwavs to ketohvdroperoxides

- &
ol el el o

T R

- ! ol

/’\\I/'o'v‘ﬁ“x " &
”!‘, - \.1:; /L\/ e P o
/“\]/v“-./"ﬂ‘u. Sy l l
P @
- .

- 1 1
uo _o L - ‘”'/-H'"":' i //J\_,— ° ﬁ/\ S,
OO:IOOH l N ° l l ° - l
/ATI/, o - ) o O

i \1’/‘\ SN A NN \/\T

KHPC:H0,  ° . o, .

HOM s formation mechanism
00QOOH = HOOPOOH (alternative H-transfer, not from HC-OOH)
3 0, addition:
HOOPOOH + 0, = [HOO),POO = (HOO),P'OO0H = OH + (HOO),P'=0 [CcH,,0:)
4™ 0, addition:
(HOO),P'OOH + O, 5 (HOO);P"00 %5 (HOD);P"OOH - OH + (HOD):P"=0 (CcH1,05)

Korcek mechanism

A H

| AN N 'g:
\\ r_\ i
~ T~ T cm‘;/c\?{?mc/" -2 “

KHP H Propanoic acid

UHPLC analyses

1 2HE-GT
miz 1490808

Major KHP isomer: taskear

BOGES08

BOUESDG

{
~

2O0E-G8

0.O0E=Q0

1 2 k) 'hr:r-_ n - Ll :‘)
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Reaction pathways to highly oxygenated products considered in atmospheric chemistry (a)

and recently extended reaction pathways in combustion (b)
(a)

-H +0, RO, H-shift
C10H16 CIOHIS CIOHISOZ C10H1504CIOH15 O +2 CIOHISO C10H14OH
1
Limonene (R’) @ (RO5) (RO’) (0'OH)
o h o .
Cc,H,O0H —> C10H1503—Sh]ﬁ> C,H,50; M» C,H50, L CoH159, s CoHis9,
2) +0, (3) +0, (4) +02 (5) +0; (6)
(0°OH) "00Q0H HOOQ'(OH)0O" (H00),0"(OH)0O" (HOO);P(OH)0O" (H00),P'(OH)O0"
1 : 1 ml
cle s| 2 5|2 o) g e
C10H1402 C]OH14O4 C10H14()6 C10H14()8 C10H14010
0Q'OH HOOQ"(OH)O (HOO),P(OH)O (H0O),P'(OH)O (HOO)P"(OH)O
(b)
10O, H-shift +0, H-shift +0O,
R® — ROO* ——> QOOH —— "'0O0QOOH — HOOQ'OOH ——> (HOO)QOO
(1) ) oz ) o
o 17 o 12
an =. = | E
HOOQ'O (HOO)ZQ"O
H-shift +0; shlﬁ
(HOO)ZQ'OO' — (HOO)2Q”OOH (HOO)3Q”OO (HOO) POOH —> (HOO) POO*
4) ()
5| Z ol Z
| & T | &
23 =3
(HOO) 3PO (HOO) 4P'O

H-shift +0; H-shift
(H00),POO" —— (HOO) P'OOH —» (HOO)P"00" — 3 (HOO)P"O
(6) -OH
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Pyrolysis and high-T oxidation

+H, O, OH -H2, OH, H20

RADICAL ALKYLE
+M -ALCENE

+M

RADICAL ALKYLE

+M -ALCENE

mH, CH3, C2Hb5
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n-Octane pyrolysis
AN/ > C3HE + X/

i

= RH+ °* AANAN — ™ C2H4+4\N+CZH4+N
’ A\ + C2H5

/W( WAL/ + CH3

i AA + WV
| > RH + /vw<
A/ +C2HS .

Re® + ANV
—a RH + ;\/\/\/ — = AN+ A/ >=C2HA+/
A —— A + C2H5¢

NN\ + CH3e

= RH + ANAN

[ ]
NG + N/
H-abstraction isomerization decomposition isomerization/decomposition

In R’: radical position #1 => ethylene
In R’: radical position #2 => propene
In R’ radical position #3 => butene, heptene
In R radical position #4 => pentene, hexene
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Bonds dissociation energies

Bond =

1—I
Er—Br
Ccl—Cl

O=CH->

N=MN

O—H

O—H

OoO=CO

Cc—Cil
Cc—C
H—H

O=0

c=0O
H—F

O—H

Bond

lodine
Bromine
Chlorine

Formaldehyde
Nitrogen

in a-tocopherol (an
antioxidant)

in methanol

Carbon dioxide

imn CH5CI
in typical alkane

Hyvdrogen
Oxygen

Carbon monoxide

Hyvdrogen fluoride

in water
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Bond-dissociation energy at 298 K

(kcal/mol) =
36
46
58
179

226

rr

105

127

83.7
83—90
104

119

257
136

119

(kJ/mol) =
151
192
242
748

245

323

440

532

350
347r—377
436

498

1077
569

497

(eV/Bond) =
1.57
1.99
2.51
7.5

9.79

3.35

4.56
S5.51

3.63
3.60—3.90
4.52

5.15

1116
5.90

S5.15



Bonds dissociation energies

Bond =

HLC—H
CoH«g—H

(CH3)>CH—H
(CH=3)3C—H

(CHg)>NCH—H

(CH3 )3 OCH—H

CH3C(=O)CHo—
H

CHL>CH—H
HCC—H
CeHs—H

CH5>CHCH>—H

CeHsCH>—H
H3C—CHs

I—|2C=CI—|2

HC=CH

Bond =

Methyl C—H bond
Ethyl C—H bond

Isopropyl C—H
bond

-Butyl C—H bond
C—H bond o to

amine

C—H bond a to
ether

C—H bond a to
ketone

YVinyl C—H bond

Acetylenic C—H
bond

Phenyl C—H bond

Allylic C—H bond

Benzylic C—H bond
Alkane C—C bond
Alkene C=C bond

Aldkyne C=C triple
bond

Bond-dissociation energy at 298 K

(kcal/imol) =
105
101

29

96.5

91

o2

o6

111

133

113

89

90

83—90

~1°F0

~230

(kJ/mol) =
439
423

414
404

381

385

402
464
556
473

372

3F7F

347377

~F10

~960
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(eVvV/iBond) %
<.
<.

3.

3.60—3.90

550
384

293

. 187

.949

.990

163

.809

763

.902

.856

o007

~7 .4

~10.0



Bonds dissociation energies vs. kinetic parameters

Reaction
CH4=CH3 +H
C2H6 =C2H5 +H

C3H8 = C2H5 + CH3

A n E/cal/mol bond, BDE
1.168E+33 -5.43 108732.0 C-H, 105 kcal/mol
6.684E+33 -5.48 105330.0 C-H, 101 kcal/mol

1.698E+44 -1.77 103004.0 C—C, 88 kcal/mol
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Single-fuel vs. multi-fuel components

1%

NATURAL GAS

Combustion Institute Summer School, Tsinghua-Princeton June 2025 163



<emmmmee- C-C ———mmmmmeeee ><--- C-H ---->
CH4+CoHg+C3H
4+L2Re+C3Mg CHy
~0.003 W
=)
3]
©
L
20.002 | CH4+CoHg
o
=
<&
-
@
$0.001 -
Q
=
0 il L L
1100 1150 1200 1250

Oxidation of methane and NG-mixtures in a JSR at 1 atm and 140ms.

I Temperature/K

l
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CHy CoHg

+10£»1l T //////,)' l'HLLOH
H,0,0H

— 3 CH3 —> C2H5 2 , CH3HCO _, CH3CO

0))) H
02
H,O,0H

5 CH»0 CoHgq " CH3, CHp, HCO
lHOOH
H,0,0H
02
HCO CoH3 %2  CH»HCO
NE e

CoHp " L HCCO 2

OH
A‘(/’ CO H,0,0H
CO / l //
CoH CH2 — CH
Ozl A/O/
CO coz
C3H3

L p C3Hg4 — 5 C3H3 ——— — 5 CEHE wem |
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Summary

Modeling: General information. Need accurate kinetics, thermochemistry, and transport data. Use inputs from
theory and measurements and also estimations by analogy, tabulations. Need accurate data that are used to
constrain the model. Reaction mechanism has a strong hierarchical structure. The core-mechanism is H2/O2 (H, O,
OH, HO2, H202, Oz, O3, H2).

Temperature dependencies of elementary reactions. Modified Arrhenius expression: k=A T" exp(—-Ea/RT)
Pressure dependencies: Lindemann-Hinshelwood, Troe.

Kinetic analyses: ROP, ROC

Sensitivity analyses: Probe how the model responds to variations of the kinetic paramers

Pressure/Temperature dependencies and reaction pathways: cool flames, high-T oxidation (e.g., R+O2 — ROz vs.
R-H+HO,)

Oxidation at low-T. More complex than generally considered. Combustion chemistry vs. tropospheric chemistry.
Pyrolysis and high-T oxidation

Single-fuel vs. multi-fuel components. The most reactive components drive the overall oxidation of the complex
fuel (e.g., NG vs. methane).
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Part 4
POLLUTANTS
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1-NOx formation

1-1-Thermal-NO (Zel’dovich, 1946)
N2+O — NO+N (75.5kcal/mole)
N+O2 — NO+O
N+OH— NO+H
Global rate (NO formation) = [N2] x [O2] exp (-133000/RT)
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1-2-Prompt-NO (Fenimore, 1979)

CH+N2 — (HCN+N) NCN + H
CH2+N2 — HCN+NH
C+Nz — CN+N
Followed by:
HCN+X — CN+HX
NCN+ O— CN + NO
NCN + OH— HCN + NO
NCN + H— HCN + N
NCN + O>— NO + NCO
NCN + O>— NO + CNO
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1-3-N20 (Malte and Pratt, 1974)

N2+O(+M) = N2O(+M)
N20+H=N,+OH
N,O+O=NO+NO
N20+0=N5+0;

N20+OH=N+HO;
N,0+OH=HNO+NO
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1-4-NNH (Bozzelli, Dean, IJCK 1995)

N2+H = NNH
NNH+H=N2+H:
NNH+O=N>O+H
NNH+O=N>+OH
NNH+O=NH+NO
NNH+OH=N2+H20
NNH+O2=N2+HO-
NNH+O2=N>+H+02
NNH+NH=N2+NH:
NNH+NH2=N2+NH3
NNH+NO=N2+HNO
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1-5-Fuel-NO

Formation of HCN and NHs by pyrolysis of amines, pyridinic compounds or pyrroles followed by
oxidation of HCN or NH3 to NO and N2O

Fuel-N

/ men \Hi
\ NHS / ~ N>
(i=1, 2)
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Pyridinic-type

acridine or 1.2-bis (4-pyridyl)- 3-pyridal or

2,3,5,68-dibenzo- athane 3-hydroxypyridine

pyridine

HO
HO (o]
i Z Y
©)kcm o ~ N/L on /@\
OH HO oM
3-pyridinecarbaxylic §-uracilcarboxytic 2,6-dilydroxy-4-pyridine-
acid acid carboxylic acid
Pyrrole-type
OH OH
carbezole or dipscolinic acid or 2,6-
CH, .
ﬁ Amino-type
Q N"N\ cH
© i B L A
N e NH o
H oH oH =<~a

antipyrine or 2.3- 2-pyrrolecarboxyiic OL-pyroghutamic 2
dimethyt-1-phenyt- acid acid or DL-S-pyrrolidone- ures
S-gyrazoione 2-carboxylic acxd

NHz NM2
OA\ NH /go

biuret or
N-carbamayurea
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Coal-N==jpp»- Tar-N

O ) N+H NO
CO
5 1HH  NO b
HCN —NCO <
Qﬁ O
CN OH
NS »HNCO
T
O
cO
‘O/NHZ
HNO i
NS
——» NO o™ NH;
| NCONH
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2-NOx reduction

2-1-Reduction through combustion modifications

2-1-1-Optimization of burner parameters — low-NOx burners

Burner parameter optimization techniques and lowNOXx burners are used to limit NO production during
combustion. These burners are specially designed to control the mixing of air and fuel to create more
or less turbulent flames stabilized by internal recirculation zones. The temperature of the flame is
lowered, thus limiting the production of thermal-NO. This type of burner works as a dual internal

staging of fuel and combustion air:

The fuel burns with primary air (70-90%) under fuel-rich conditions. Secondary air (10-30%) is injected
over the main combustion zone and completes the oxidation of the fuel. This increases the volume of

the flame which decreases the flame temperature and thus the production of thermal-NO.
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Post-combusti
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2-1-2-Flue gas recirculation (FGR, EGR)

The recirculation of the fumes inside the oven or burner allows a dilution of the flame and therefore a
sharp decrease in temperature. Generally, 20 to 30% of the flue gases recirculate and are mixed with
the combustion air. The stoichiometry is not modified since the concentration of oxygen in the fumes
is negligible. The efficiency is relatively low (<20%) because the contribution of thermal NO does not

dominate in installations burning coal.

2-1-3-Fuel staging

Staging of the fuel allows alternation between a fuel-rich zone and a fuel-lean zone which limits the

temperature of the flame, improves the distribution of oxygen, and limits NOx formation.

Combustion Institute Summer School, Tsinghua-Princeton June 2025 177



2-2-Chemical reduction of NOx

2-2-1-NOx reduction by selective non-catalytic reduction SNCR (Lyon, 1974)

NO/NO jnitial

0
1000 1100 1200 1300 1400 1500
T/IK

a

NH3/NH3 jnitial

0.8

0.6

0.4

0.2

0 .
1000 1100 1200 1300 1400 1500

T/K

b

N2O Mole Fraction

S
®
&

w
®
&

N
®
o

H
®
o

TIK

C

Effect of NO initial concentration on its removal by ammonia in lean conditions (®=0.1). The initial

conditions were: 1000 ppm of NH3s, 12500 ppm of O, residence time=100 ms, 500 ppm of NO (open
symbols and dashed lines) or 1000 ppm of NO (closed symbols and solid line). The data (symbols)

are compared to the modeling results (lines).
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5e-5 T

w N
@ @
& o

NH3/NH3 jnitial
]
a

NO/NO injtial
N2O Mole Fraction

[
®
(9]

0 L == 0 :
1000 1100 1200 1300 1400 1500 1000 1100 1200 1300 1400 1500 1000 1100 1200 1300 1400 1500
T/K T/K T/K

Effect of NHj3 initial concentration on NO reduction and N2O formation in lean conditions ($=0.1). The
initial conditions were: residence time=100 ms, 500 ppm of NO, (i) 500 ppm of NH3 and 6250 ppm of
O: (open symbols and dashed lines), (i) 1000 ppm of NH3z and 12500ppm of O: (closed symbols and

solid line). The data (symbols) are compared to the modeling results using the present kinetic reaction
mechanism (thin lines) and that of literature (thick lines).
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500 | I N N N N A S s |

400 |
300 |

200 |

NO Mole Fraction

100 |

ol vt WU L
900 1000 1100 1200 1300 1400
T/K

The reduction of NO by ammonia in a plug flow reactor: comparison between the experimental
results of Kasuya et al. [F. Kasuya, P. Glarborg, J.E. Johnsson, K. Dam-Johansen, Chem. Eng. Sci.
50 (1995) 1455.] (symbols) and this modeling (line). The initial conditions were: 1000 ppm of NHs,
residence time=(88 K/T) s, 500 ppm of NO,4% O, 5% H-0, balance N..
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Perturbation by sulfur dioxide

5e-5
1 C
_ 4e5 -
_ = 0.8 g L
.8 = o
E £ S 3e5 [
kS ™ 0.6 L
S z g
pd
= = =
©) £ 04
I .
=2 > 9\1
pd
02 F 0.2
0 M BT IS RS R 0 v by by by T n 0
1000 1100 1200 1300 1400 1500 1000 1100 1200 1300 1400 1500 1000 1100 1200 1300 1400 1500
TIK T/K T/K

Effect of SO; initial concentration on NO removal by ammonia in lean conditions ($=0.1). The
initial conditions were: 500 ppm of NH3, 6250 ppm of O,, residence time=100 ms, 500 ppm of NO

(open symbols and dashed lines) and 1000 ppm of SO, (closed symbols and solid line). The data
(symbols) are compared to the modeling results (lines).
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le-5
0 0 (P —
1000 1100 1200 1300 1400 1500 1000 1100 1200 1300 1400 1500 1000 1100 1200 1300 1400 1500
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Effect of SO initial concentration on NO removal by ammonia in lean conditions (®=0.1). The initial
conditions were: 1000 ppm of NH3s, 12500 ppm of O, residence time=200 ms, 1000 ppm of NO (open
symbols and dashed lines) and 1000 ppm of SO: (closed symbols and solid line). The data (symbols)
are compared to the modeling results (lines).
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Effect of SO; initial concentration on NO removal by ammonia in fuel-rich conditions (®=2). The initial
conditions were: 1000 ppm of NH3s, 625 ppm of Oz, 200 ms, 1000 ppm of NO (open symbols and
dashed lines) and 1000 ppm of SO: (closed symbols and solid line). The data (symbols) are
compared to the modeling results (lines).
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NH2 production:
NH3;+OH => NH; + H.O, R(NH2)=0.863
NH3+O => NH2 + OH, R(NH2)=0.124
NH- reacts with NO via (161) and (162),
NH> + NO => N2+H20, R(NO)=-0.544
NH, + NO => NNH + OH, R(NO)=-0.322
OH radicals are produced via
NH.> + NO => NNH + OH, R(OH)=0.41
H+ O, =>0H + O, R(OH)=0.187
NO+ HO2 => NO2 + OH, R(OH)=0.157

NHs + O => NH. + OH, R(OH)=0.142
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O-atoms are produced by reaction (-74),

H+0, => OH + O, R(0)=0.997 (-74)

SO. contributes moderately to the removal of O-atoms through reaction (7):

SO, + O (+M) => SO; (+M), R(0)=-0.03 (7)

The model indicates that SO reacts mostly through 3 reactions:

SOz + O (+M) => SO3 (+M), R(S02)=-0.173  (7)

H + SO, +M => HOSO + M, R(S02)=-0.204  (57)

SO, + NH2 => NH2SO», R(S02)=-0.43 (72)

HOSO formed in reaction (57) recycles SO via reaction (13):

HOSO + 0, => HO; + SO,, R(HOS0)=-0.999 (13)
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The sequence of reactions (13) + (57)
HOSO + 02 => HO, + SO2 (13)
H+ SO, +M =>HOSO + M (57)

is equivalenttoH + O+ M =HO2+ M

=> reduction of the radical pool since the fraction of H atoms reacting in (57) will not produce OH and

O via reaction (-74) and OH via reaction (100), NO2 + H => NO +OH.

Thus, under such conditions, introducing 1000 ppm of SOz reduces the rate of production of O by a
factor of 1.8 and that of OH by a factor of 1.75. Since O and OH are the major agents of oxidation of
NHs3, via reactions (149) and (150), the rate of ammonia oxidation is reduced by a factor of 1.7, resulting
in the reduction of the rate of NH2 production by a factor of 1.7 and in a reduction of 42% of NO-

consumption rate.
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Summary

Under fuel-lean conditions, the addition of SOz inhibits the SNCR process via:
H+ SO+ M=HOSO + M followed by HOSO + Oz = HO, + SO> equivalent to the equation:

H+ O+ M=HO, + M.

Under fuel rich conditions, the addition of SO inhibits the process via:
H+ SO+ M=HOSO + M followed HOSO + H = Hy + SO

and viaH + SO, + M = HOSO + M followed by HOSO + O, = HO, + SO..

SOz does not reduce the efficiency of the thermal de-NOx process but shifts the optimal temperature to

higher values.
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Further inhibiting effects of SO-

0.012

0.01
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O Without SO»
@® With SO»
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CO Mole Fraction

b

The effect of SO; on the oxidation of a CO/H; mixture in a plug-flow reactor. Initial conditions: (a) CO = 1.0%,
H>=1.0%, O, = 1.0%, H>0O = 2.0%, balance N», without and with SO, = 1.2%, residence time is 192.7/T or
192.3/T; (b) CO = 1.0%, H2 = 1.0%, O2 = 0.5%, H,0O = 2.0%, balance N,, without and with SO, = 0.3%, residence
time is 192.7/T or 192.3/T. Inhibition is due to H+SO,+M=HOSO+M followed by HOSO+H=H>»+SO,. From Dagaut
et al., Int J Chem Kinet 35: 564-575, 2003.
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2-2-2-NOx reduction by reburning)

— -»Gurnout ZCD 3

Reburning ZOD 2

FlIJre| i Primary Zone 1
""""""""" Combustion

(1) Thermal-NO production in near-stoichiometric conditions;
(2) fuel-rich zone, NO + HC — N2, HCNOx;
(3) excess-air, HCNOx oxidation — NO
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FIGURE 11 The effect of equivalence ratio on the reburning of NO by a CH4/C;H; (10:1)
mix at 1atm (r = 0,12s; 1000 ppm of NO; 7272ppm of CHy; 728 ppm of C;Hg). Comparison
between experimental data (symbols) and modeling (lines): NO, B—; HCN, A---; TFN, ® .. ;
(a) 1250K; (b) 1300K; (c} 1350K; (d) 1400K; (e) 1450K.
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FIGURE 10 The oxidation of a CHa/C;Hj (10:1) mix in a JSR at latm (r = 0.125; 7272 ppm
of CHy; 728 ppm of C;H; 8546 ppm of O,; ¢ = 2). Comparison between experimental data
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propene o; propane ¢; n-butane A; i-butane A.. Stoichiometric mix, 1000ppm NO, 8800 ppm C, t:
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Combustion Institute Summer School, Tsinghua-Princeton June 2025 196



HCCO production
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Inhibiting effect of SO2 on NO-reburning using 2 reburn fuels at 1300K

Y(NO)

Y(NO) = X(NO)w. so2 / X(NO)wio so2

The residual of NO increases in presence of sulfur dioxide
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3-UHCs and Soot

Organic compounds in the troposphere

Concentration

Class Compound Formula Typical Source Sink Range
Alkanes Methane CH, Microbial processes, OH 1.7 ppm
natural gas |
Ethane C,H¢ Motor vehicles OH 0-100 ppb
Hexane C¢H,. Motor vehicles OH 0-30 ppb
Alkenes Ethene C,H, Motor vehicles, OH,0; 0-100 ppb
microbial processes
Propene C;Hg Motor vehicles OH,O; 0-50ppb
Isoprene CsHg Vegetation OH, O, 0.2-30 ppb
Alkynes Acetylene C,H, Motor vehicles OH 0-100 ppb
Aromatics  Benzene CeHq Motor vehicles OH
Toluene C,Hg Motor vehicles OH
Aldehydes Formaldeyde @~ HCHO Motor vehicles hv, OH
Acetaldehyde  CH,CHO Motor vehicles hv, OH
Acrolein CH,CHCHO
Ketones Acetone CH,C(O)CH; hv,OH 0-10 ppb
Acids Formic acid HCOOH Rain
Acetic acid CH,COOH Rain
Alcohols Methanol CH,OH OH
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Oxidation of organic compounds in the troposphere

VOC

NO, NO

N
P

OH HO,

\

carbonyl
product(s)

reaction with O,,
decomposition or

ROZ RO isomerisation

Combustion Institute Summer School, Tsinghua-Princeton June 2025

200



Terpenes to HOMs and Secondary Organic Aerosols (SOAs)

a

HSC%
H,c  CH

Reaction pathways to ketohydroperoxides

Terpenes oxidation
H30 CHS

HQC.\H\\"
3
CHy CHs

R+ 0, 5RO, QOOH

2nd O, addition:

QOO0OH+0, 5 00Q00H

00QOOH & HOOQ'OOH
HOOQ'OOH - OH+ HOOQ'O (KHP)

HOMSs formation mechanism

00QOO0H = HOOPOOH (alternative H-transfer, i.e., not from H-C-OOH)

3 0, addition:
HOOPOOH + 0, & (HOO),POO % (HOO),P'OOH
(HOO),P’OOH - OH + (HOO),P’=0 (C,.H,,0x)

4% 0, addition:
(HOO),P'O0H + 0, & [HOO),P’'00 % (HOO),P"O0H
(HOO),P"O0H -3 OH + (HOO),P"=0 (C,,H,,0,)

5t 0, addition:
(HOD),P"O0H + 0, 5 (HOO),P”00 % [HOO),P""O0H
(HOO),P"OOH = OH + [HOO),P™'=0 (C,oH,405)

-

CHs

~N

From Belhadj et al. ICCK, 2019

("Results
Ketohydroperoxides
"""" CIRTA0STH e C10HI403 He
CoH O L |
MH*  m/z=183.10167 =~ ]
M(-H) m/z=181.08715 ... A1 I

10 1 ST DL 1L 1S 1 ST TS 13,97 S ST S TR T

..... C10H1403 D+

MD*  m/z=184.10785 ==
HOMs

..... C10H1405 H-
CrofludOs M -
M(-H} m/z=213.07688 e

""" CL0HL407 -
CrofhaCy:M - —
M(-H} m/z= 24506694 =

uuuuu

uuuuu

uuuuu

------------------------------

Combustion Institute Summer School, Tsinghua-Princeton June 2025

201



J\/\/\r CIOHZZ

+OH | - H,0 (/HO,)
af(oz)lv 2 2

.)\/\/\r +—02n— )\/\/\r + HO,
+0, 1} CE CioHzo

ﬂ < CioH200
CE — !
+0, 1L C1oH200;

."OH O\OH"‘OH
CioH2003 l SI & BS EA
+OH
o_0
OH
C1oH2905

"’0?.{“0[1

CioH20Os5

i

Combustion Institute Summer School, Tsinghua-Princeton June 2025

+ OH

H\(Q/\r.
£3 +HO,

+ OH

Additional pathways to HOMs by Wang et al.

PNAS (2017)

202



HOMs observed in a JSR

Group I Group II Group 111
2010 I T T T T~ T T T T T T T
2.5x10°7 | . I .
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DX B . | | .
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3
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|
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0.0

Limonene oxidation sample from a JSR analyzed by FIA and HESI (negative mode).

Group | corresponds to compounds resulting from multiple oxidation reactions including fragmentation and
condensation.

Groups Il and Il correspond to higher molecular masses, resulting from addition and condensation reactions.

R. Benoit, N. Belhadj, M. Lailliau, P. Dagaut, Atm. Chem. Phys., 2021 https://doi.org/10.5194/acp-2020-1070
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lensation

__Addtion, cond

Limonene oxidation: Kendrick diagram

. *  Auto-oxidation
[ ® Auto-oxidation + O,/OH’
| * OyOH

Kendrick's mass analysis (Kendrick, 1963) allows
representing in two dimensions and in a new reference
frame, a complex mass spectrum of an organic mixture.
This reference frame is based on a mass defect
calculated from structural units (CH2, O, CHO, ...). In a
Kendrick representation, the homologous series
(constructed by the repeated addition of structural units
CH2, O, CHO, ...) are aligned on the same horizontal
line. The mass defect is calculated by the difference
between the Kendrick mass and the nominal mass. If
CHa is chosen as the structural unit, in Kendrick’s plots,
the x-axis represents the Kendrick Mass:

nominal mass of CH,

KM(CH,) = observed mass *

exact mass of CH,

The y-axis represents the Kendrick Mass Defect:

KMD(CH,) = nominal mass — Kendrick mass (CH,)

The number of double bond equivalent (DBE)
represents the sum of the number of unsaturation and

ring present in a compound.

All the chemical products, resulting from limonene oxidation by ozonolysis/photooxidation and autoxidation gathered in the form of

a Kendrick diagram correlated to the DBE: ® new chemical products from autoxidation experiments in JSR; ® products common to
the 3 modes of oxidation; ® chemical products with molecular formula not observed in JSR.

https://doi.orq/10.5194/acp-2020-1070
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Pollutants from Diesel/biofuels combustion in I.C. engine

i

i vt v
%1 @\‘%ﬂi"@ }i] Ozone
N T | Soot filter scrubber
AN
—p— :Lr[j'—é Inlet manifold .
Engine .
Timer-controlled .-~~~ 10
Selenoid valves -.__ Q’Q
e
-
E—Ij‘ Exhaust manifold l,_—

Pump Mass flow

C

ontroller

DNPH-coated

--=" cartridges

Engine and gas sampling system. DNPH+carbonyl; HPLC with UV detection @360nm.
From Dagaut et al., J. Eng. Gas Turbines Power 141, 031028-1 (2019)
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Diesel engine conditions

Nbr of cylinders
Cycle

Cylinder (cm?3)
Vol. Ratio
injector

Type of injection
Nbr of injectors
Nbr of injection

Post-treatment

4

4

1460.74

15.21

Continental SA.
Direct Common Rail
4

3 per cycle

no
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Pollutants from Diesel/biofuels combustion in I.C. engine
Additives used (mix Diesel/additive 90/10 vol.)

Density M.W.
Mix DCN | Additive | Chemical class Formula

(g/mL @ 25°C) | (g/mol)
55,34 |none
46.32 | EtNOL |Alcool C2HeO 0.789 46.07
49.71 | 1-BNOL | Alcool C4H100 0.810 74.12
48.96 |CarbD* |ester of carbonate |CsH1003 |0.975 118.13
54.22 | OctM methyl ester CoH1502 0.877 158.24
55.56 |EMHC |Mixed methylesters | C17.92H3302|0.883* 280
54.75 |TPGME |ether C10H2204 | 0.963 206.28
52.74 |SPK Mixed paraffins? Ci1.03H2337 | 0.761% 156

*@15°C; 10,21% vol. aromatics; * DEC
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Pollutants from Diesel/biofuels combustion in I.C. engine
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Global emission of carbonyl compounds at I.C.E. exhaust A
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Pollutants from Diesel/biofuels combustion in I.C. engine
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Soot and PAHs Oxidation products

H.A.Michelsen, Proc. Combust. Inst. 36, 717-735 (2016) ér%‘hma& rg;?\t;—s:
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PAHs formation via the HACA mechanism (Frenklach and Wang)

A

Csz +H Céc “
e : <~ T U
O = O > s ol s

_ 1 |

S O C e
— LU= 0 .

Fig. 10.2. H-abstraction-C,Hz-addition reaction pathway of PAH growth O N e OO

> Fig. 10.4. Comparison of two pathways of PAH growth
4.0 — .

The main kinetic features of PAH growth after a certain PAH size, i,
S are revealed by considering an analytical solution with the smallest set of re-
2 actions that represent the principal elements of the HACA sequence [10.24].

This minimal reaction set is given as
+ Czﬂz .
Q A;+H=A;e+H, (103)

A; e +CoHy = A;CyHoe (10.4)
A,‘Cszﬂ + CgHg — A,;+1 +H (105)

Fig. 10.3. PAH growth initiated by aromatic “combination”
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Benzene formation

Fuels: acetylene (HC=CH)
propene (CH3;-CH=CH), propyne (HC=C-CH:), allene (H.C=C=CH.)
1,3-butadiene (H.C=CH-CH=CH.,)

Conditions: JSR, 1 atm, 900-1300 K

Benzene formation from acetylene, allene and propyne proceeds through a Cs channel involving the
recombination of propargyl radicals:
CsHs + C3Hz — Cs intermediates — Benzene (1)

In the case of 1,3-butadiene, the formation of benzene is driven by 2 competitive routes, a (C2+Ca)
route and the Cs route (1):

1,3-C4He + C2H3z — Cs intermediate —Benzene (2)

1,3-C4Hs + CoH2 — Ce intermediate —Benzene (3)
According to our computations, the formation of 1,3-C4Hs results from the intermediate formation of
1,3-cyclopentadiene (1,3-CPD):

aCsHs + CoH2 —1,3-CPD — CsHs — 1,3-C4Hs (5)

For propene, the early formation of benzene involves a Cs route: the recombination of allyl radicals,
formed by H-atom abstraction from propene, producing 1,5-hexadiene
aCsHs+ aCsHs — 1,5-CeH10 —CeHo —>c:yclo-Cng —1,3-cyclohexadiene —CsH7 —CsHs

From P. Dagaut and M. Cathonnet. A comparative study of the kinetics of benzene formation from unsaturated C
to C4 hydrocarbons, Combust. Flame, 113, 620 (1998).
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Pollutants from Jet A-1/biofuels combustion

pump P
sl soot 0 pyrex tube

B ™ l

j . — =74 B

liquid fuel

atomizer n
vaparizer f“x

"
- flat-flame burner

T._Nz

O, + N R .
2" 2 = B o \\ mixer

Experimental set-up, premixed sooting flame.

From Dagaut et al., J. Eng. Gas Turbines Power 141, 031028-1 (2019)
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Pollutants from Jet A-1/biofuels combustion

Experimental conditions

Fuel Formula Fu(e(::]l: V::‘ )ate N ﬂ(:::vrr:t;) E.R.
N2 O:

Jet A-1 C11H22 1.58 35 11.7 2.23

Jet A-1/1-BNOL* Co.6 H19.6 Q0.2 1.87 35 12.0 2.24

Jet A-1/CarbD* Co.s H19.6 Q0.6 1.80 35 11.7 2.28

Jet A-1/OctM* C10.6H21.2004 1.68 35 11.3 2.28

Jet A-1/2,5-DMF* C10H19.200.2 1.70 35 11.2 2.23

* Jet A-1/additif 80:20 v/v
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HPLC Chromatogram showing 18 HAPs after extraction
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Pollutants from Jet A-1/biofuels combustion

Jet A-1/ 2,5-DMF A

Jet A-1

SPK

Jet A-1/ CarbD
Jet A-1/ OctM
Jet A-1/1-BNOL

Frrrrrrrrrrrrrrfrrrrfrrrrrrrrprrrrprrrrprroo
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
ng/mg of soot

Concentration of 18 HAPs on soot particles A
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Pollutants from Jet A-1/biofuels combustion

4) 4) <

Jet A-1/2.5-DMF Jet A-1/OctM Jet A-1

[ 1%

12%
3%

‘ 23% f 0%
‘ . 42%”
Jet A-1/CarbD Jet A-1/1-BNOL SPK
B Fraction massique des HAPs de petite taille Mass fraction of small PAHs

" Fraction massique des HAPs de taille moyenne Mass fraction of mid-size PAHs

B Fraction massique des HAPs de grande taille Mass fraction of large PAHs

Contribution of # classes of PAHs to total amount of PAHs on soot (Shahla, 2015)
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Pollutants from Jet A-1/biofuels combustion

Global toxicity of soot samples*

Fuel Equivalent toxicity(TEQ) Variation to Jet A-1 %
Jet A-1/1-BNOL 1,294 -99

Jet A-1/CarbD 10,834 -94

Jet A-1/OctM 83,976 -57

SPK 115,904 -40

Jet A-1 193,574 0

Jet A-1/2,5-DMF 574,136 +197

From Shahla ( 2015)

*Nisbet et Lagoy (Regulatory Toxicology and Pharmacology, vol. 16, pp. 290-300, 1992) defined
a global equivalent toxicity:

TEQ = ( C; x TEFi) - f
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Effect of trace species on ignition: NOx, ozone

1-NOx-HC interactions

The mutual sensitization of the oxidation of methane and NO proceeds through the NO to NO>

conversion by HO2 and CH30Os..

At 1-10 atm, the conversion of NO to NO2 by CH30> is more important at low temperatures (800 K)
than at higher temperatures (850-900 K) where the reaction of NO with HO> dominates the production
of NO..

The NO to NO2 conversion is enhanced by the production of HO2 and CH30O- radicals from the
oxidation of the fuel. The production of OH resulting from the oxidation of NO promotes the oxidation
of the fuel: NO + HO2 => OH+ NO: is followed by OH + CH4 => CHs. At low temperature, the reaction
further proceeds via CHz + O2 => CH302; CH302 + NO => CH30 + NO.. At higher temperature, the
production of CH3O involves NO2: CH3 + NO2 => CH;30.

The sequence of reactions: CH3;0 => CH.O + H; CH20 +OH => HCO; HCO + O2 => HO2 and H + O
=> HO,. => CH20 + H; CHO +OH => HCO; HCO + Oz => HO, and H + Oz => HO..
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The mutual sensitization of the oxidation of methane and NO in a JSR at 1 atm: Effect of the introduction of
200ppm of NO on the oxidation of methane in fuel-lean conditions (¢=0.1, 2500 ppm of CH4, 50000 ppm of O,
t=120 ms). (a): The dashed-dotted line represents the results obtained with the mechanism and thermochemical

data of [Hori 2002]. The results obtained with the mechanism and thermochemical data of [Hori 1998] are

presented as dashed lines, those using [Faravelli 2003] as a dotted line (... ...), the results of the proposed model

are presented as full lines. In (b) and (c):The filled symbols and the continuous lines refer respectively to the data
and the simulations (proposed scheme) with NO added; the open symbols and dotted lines refer respectively to the

data and simulations (proposed scheme) without NO.
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The mutual sensitization of the oxidation of methane and NO in a JSR at 1 atm: Effect of the introduction of

200ppm of NO on the oxidation of methane in fuel-lean conditions (¢=0.1, 2500 ppm of CH4, 50000 ppm of O,
t=240 ms). (a) The experimental results (symbols) are compared to the computations (dashed lines using the model
of [Faravelli 2003], continuous line for this work). In (b) and (c): The filled symbols and the continuous lines refer

respectively to the data and simulations with NO added; the open symbols and dotted lines refer respectively to the

data and simulations without NO.
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The mutual sensitization of the oxidation of methane and NO in a JSR at 10 atm: Effect of the introduction of

200ppm of NO on the oxidation of methane in fuel-lean conditions (¢=0.5, 2500 ppm of CH4, 10000 ppm of O,
t=1000 ms). (a) The NOx experimental results are compared to the computations. (b) and (c):The filled symbols and

the continuous lines refer respectively to the data and simulations with NO added; the open symbols and dotted

lines refer respectively to the data and simulations without NO.
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The mutual sensitization of the oxidation of methane and NO in a JSR at 10 atm ( 200 ppm of NO, @=1, 2500
ppm of CH4, 5000 ppm of O,, t=1000 ms). Comparison between modeling (lines) and experiments (symbols).
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The mutual sensitization of the oxidation of methane and NO in a JSR at 10 atm ( 200 ppm of NO, ¢=0.5,
2500 ppm of CH4, 10000 ppm of O, t=240 ms). Comparison between modeling (lines) and experiments (symbols).
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The mutual sensitization of the oxidation of methane and NO in a tubular flow reactor at 1 atm (112 ppm of

NO, 200 ppm of CH4, 5% of Oy, t=2.8 s). Comparison between modeling (lines) and experiments (symbols).
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Comparison between this modeling (lines) and experimental data (symbols) obtained in a tubular flow reactor at
1000 K [Hori 1998] (initial conditions: 20 ppm of NO and 50 ppm of methane in air).
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The mutual sensitization of the oxidation of methane and NO in a JSR at 10 atm ( 200ppm of NO, ¢=1, 2500
ppm of CH4, 5000 ppm of Oy, t=1000 ms). Comparison between several modeling results using the mechanism
and thermochemical data of [Hori 1998] (continuous line), [Hori 2002] (dashed lines), [Faravelli 2003] (dash-dot

line) and experiments (symbols).
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1025

NO Normalized rates of reaction

T/K

Normalized rates of reaction of NO at 1 atm (continuous lines) and 10 atm (dotted lines).

HNO+ NO2 =NO + HONO (133); NO + HO2 = NO, + OH (144); NO2 + H = NO + OH (149);
CH3+N0O2=CH30+NO (1025); CH302+NO=CH30+NO2 (1029)
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NO OH

0024— co ; HCO

Schematic representation of the reaction paths involved in the mutual sensitization of the oxidation of

methane and NO.
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Sensitivity of the computations to the heat of formation of the methylperoxy radical (initial conditions: 2500
ppm of methane, 50000 ppm of oxygen, 200 ppm of nitric oxide, ¢=0.1, 240 ms). The upper value of AH®gs
(CH30,) used was 6.1 kcal/mole (dashed lines) and the lower value was 2.5 kcal/mole (continuous lines).

M. Hori, N. Matsunaga, N.M. Marinov, J.W. Pitz, C.K. Westbrook, Proc. Combust. Inst. 27 (1998) 389-396.
M. Hori, Y. Koshiishi, N. Matsunaga, P. Glaude, N. Marinov, Proc. Combust. Inst. 29 (2002) 2219-2226.
T. Faravelli, A. Frassoldati, E. Ranzi, Combust. Flame 132 (2003) 188-207.
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Overview of NOx-HC interactions
oxidation reduction

Mo e fFra ehion

o0 110D Y00

NO + HO, — NO; + OH
0) NO + RO, —- NO2 + RO

NO + HCCO — HCNO + CO

HCNO + H — HCN + OH

NO + HCCO — HCN + CO,
@ HCN — HNCO —NH, — NH

NH + NO — N + OH

NH> + NO — N2 + H.0O
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HCCI control via Sensitization by ozone (O3 — O2+ O)

Fuel

Vaporizer Engine Characteristics

- ———

<= Air (~10%)

" Heater
¥ ;: Y/ . '{N2 Stroke 88 mm
g --,_ =- Displaced Volume 499 cc
g Connecting Rod 145 mm
Compression Ratio 16:1
Homogeneous
AirfFuel Mixture / Exhaiiat All the results presented were

conducted for ;

UConstant rotation speed : 1500 rpm

= = H & LConstant equivalence ratio 0.3

Ozone Analyzer

Tin

Masurier et al., ICE2013
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Results: HCCI control via Sensitization by ozone (O3 — 02+ O)

Heat release rates analysis at low temperature with
ozone seeding

Experimental conditions :

o))
]

|

|

I
o |
o
gs
3

......... :_ Uintake pressure : 1.3 bar
QCAS0 . ~5 CAD
UOzone : 0, 10 and 40 ppm

g
o

I
o

o)
o

Observations :

rJ
o

d A cool flame occurs
with a low HRR.

Heat Release Rate (J/CAD)

—
-

L Ozone mainly acts
on early fuel oxidation

-20
Crank Angle Degree

Masurier et al., ICE2013
w/o Oas: O; + fuel — +R followed by + fuel - H202 +R  (slow)

with Os: O + fuel —» OH +R followed by OH + fuel - H20 +R (FAST)
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Results: HCCI control via Sensitization by ozone (O3 — 02+ O)

In-Cylinder Pressure {bar)

55 ; ; 60
[03]= 8.4 ppm
50+ _
[O,]= 3 ppm 50l
451  [O]]=2.8 ppm Q‘
0l [03]= 1.3 ppm % 40l
QD
35} E
30} g 30
o
@
25¢ & 20!
20} o
I
15 10t
Ji
135 20 10 0 10
Crank Angle Degree
Masurier et al., ICE2013
w/o Os: O; + fuel — +R followed by
with Os:

In-cylinder pressures and Heat release rates

[O.]=8.4 ppm

Crank Angle Degree

+ fuel —» H202 +R

O + fuel — OH +R followed by OH + fuel — H20 +R
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Results: HCCI control via Sensitization by Ozone, NO, and NO-

[0,]=19.6 pp "
[NOJ=199ppm__ } .

\.:\' ,‘-~\:‘.’ i
[NO,] = 19.7 pp |

501

401

<
w
o
-

(8]
[e)
T

Without 03,
NO and NO2

In-Cylinder Pressure [bar]

[\
-

[N
[=}
T

N
S
T

Without 03, i
NO and NO2

[\
(=)
T

Heat Release Rate [J/CAD]

230 -20 -10 0 10 20 30
Crank Angle Degree [CAD]

In-cylinder pressure and heat release rate traces without any species and with 20 ppm of each
species separately injected. Masurier et al., SIC 35/ PROCI 2015
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HCCI control via Sensitization by Ozone, NO, and NO:

a ]
< 0%*\&
O, E A

] N

S | e T A

e \E\g[ A
S 5‘ el ]
Z

A -

E . s = P

o]

s ¢

=
= 0 e |
: 0 NO
- %
s % A NO,
U _15 | | | |

0 20 40 60 80 100

Oxidizing Chemical Specie Concentration [ppm]

Shift of the CAS50 as a function of the three species when they are separately injected. (CA50 is the
crank angle where 50 % of the fuel has burned) Masurier et al., SIC 35/ PROCI 2015

Effect on CA50: O3>>NO>NO-
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HCCI control via Sensitization by Ozone, NO, and NO:

Simple computations to understand the process

e Ozone mainly decomposes into oxygen molecules (O2) and O-atoms, FAST.
Then, the fuel reacts directly with O-atoms to yield OH radicals and rapid

oxidation of the fuel ensues: CgH1s+O—CsgH17+OH (a) followed by
CsH1s+OH—CsH17+H20 (b).

e NO is mostly consumed by reaction with HO2, resulting in the initial oxidation
of the fuel via CgH18+0O2—CgH17+HO2, SLOW,

OH radicals are produced via NO+HO>—NO2+OH, FAST.

Subsequently, rapid fuel consumption can take place via (b) due to OH

production. Consequently, as nitric oxide requires an HO: radical to yield
an OH radical, this explains the lower effect of NO on ignition delays
compared to ozone.

e Nitrogen dioxide addition: OH production results from the following reaction
system: CH3+NO2—CH30+NO; NO2+HO2—-HONO+O2;
HONO+M—NO+OH+M; and NO+HO2—NO2+OH. As nitrogen dioxide presents
intermediate reactions before OH production, its effect on ignition delays is the
lowest of the 3 additives considered.
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HCCI control via Sensitization by Ozone and NOx

70 : : 100 70 : :
130.5 ppm MK MeoH 130.5 ppm 130.5 ppm EtOH
—60r 71,5 ppm — 80 71.5 ppm __60r  71.5ppm
3 30.1 ppm- +8.2 bar % 20,1, ppm s 30.1 ppm X
- X = 11.4 - )
v 50 11.4 ppm- = 60" v ppm w 50 11.5 ppm__ + 9 bar
3 = +20.4J/CAD 3
vy o vy
2 a0 v 2 a0
5 o 40 5 .
© [T} © \
= 30f &= £ 30 0 ppm
g 3 20 g
c T c
20| 20|
0
1 : : ‘ ‘ ‘ 1 : :
-%o 20  -10 0 10 20 30 30 20 -10 0 10 20 30 -%o 20  -10 0 10 20 30
Crank Angle Degree [CAD] Crank Angle Degree [CAD] Crank Angle Degree [CAD]
*Oeon | | 70 ‘ ‘ 100 - ' |
96.6 ppm.. BuOH BuOH "" R 96.6 ppm
L A . 51.4 ppm
= 80 ~130.5 ppm =60 Shapem- "y /2 +92b = 80
@ Ve "’f . ar (] 1 —22.8 ppm
g = 22.8 ppm—__|{ [, 3 8 :
5 +25.91/CAD AL 5PPm 030 117 ppm P = ‘ — 11.7ppm
g 0 3 30.1 ppm 3 ' BT v 60 ’ 0 ppm
< i e/ iy K +42.8)/CAD ! :
u __-11.5ppm & 40 A & :
® 40 o e o 40 !
= - P A —_ ‘A
@ Oppm £ 30 e @ ,‘
I ) 5 !
£ 20 £ r 20 ?
20 / ‘
0 Of———aézéi’ O S St
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In-cylinder pressure traces and heat release rate traces for alcohols as a function of the ozone input.
Black curves correspond to the average of 100 cycles recorded and areas represent the variation over
100 cycles. Masurier et al., Appl. Energ. 2016
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Summary

NOx formation: Zeldovich, Prompt-NO, N2O, NNH, Fuel-NO
NOx reduction: SNCR, Reburning
UHC and soot

Effect of trace species on ignition: NOx, ozone. Enhanced oxidation rate by ‘traces’ of oxidants

oxidation reduction

Mo e Fra efim

$ov 1109 Yo

NO + HO2, — NO2 + OH

@ NO + RO2 —» NO2 + RO
NO + HCCO — HCNO + CO
HCNO + H — HCN + OH

@ NO + HCCO — HCN + COq
HCN — HNCO —NH2 — NH
NH + NO — N2 + OH
NH2 + NO — N2 + H20
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Part 5
COMMERCIAL FUELS, SURROGATES,

BIOFUELS

n-alkanes

n-hexadecane

1.2 4-trimethylbenzens (F-colans)

n-decylbenzens

1-methyinaphthalens

tatralin
{tetrahydronaghthalena)

(from W.J.Pitz and C.J.Mueller)
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MODELING USING SURROGATES/MODEL-FUELS

Surrogate model fuels*are used for the kinetic modeling to simplify the problem

DCN, fuel composition in terms of chemical classes and hydrocarbons concentrations,
H/C ratio, and the availability of valid chemical kinetic oxidation sub-models are used

to select the components of the model fuels.

DCN is a parameter related to fuel ignition

*s. Dooley et al., Combust. Flame 157 (12) (2010) 2333-2339.

F.L. Dryer, Proc. Combust. Inst. 35 (2015) 117-144.
A. Agosta et al., Exp. Thermal Fluid Sci. 28 (7) (2004) 701-708.
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Modeling using surrogates/model-fuels

The fuel composition impacts the relative formation of products and intermediates.

The fuel composition impacts radical pool and cross-reactions

The HIC ratio is a parameter influencing soot formation.

Threshold sooting index (TSI) is a parameter related to soot tendency

Molecular weight is a parameter related to fuel diffusivity

Validation of this approach needs extensive testing
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5.1 Gasoline

Gasoline is constituted by several hundreds of components: it is not feasible to incorporate of all them
in a kinetic model.

Therefore, surrogate model fuels are used to describe gasoline behavior.

In this example, 4 hydrocarbons of dominant gasoline chemical classes were chosen to represent a
commercial gasoline:

iso-octane for iso-paraffins,
toluene for aromatics,

1-hexene for olefins,

ETBE for oxygenated additives.

Mole fraction composition of the different surrogate gasoline mixtures

Iso-octane Toluene 1-hexene ETBE

Mixture 1 50 35 15 0

Mixture 2 47.5 33.25 14.25 5

Mixture 3 45 31.5 13.5 10
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Reactions of interaction between different fuel fragments during the oxidation of surrogate mixtures.

1-CeH12 + i-C4H7 = 1,3-C6H11 + i-C4Hs

1-CeH12 + i-C4H7 = 1,4-CeH 11 + i-C4Hs

1-CgH12 + i-C4H7 = 1,5-C6H11 + i-C4Hs

1-CeH12 + i-C4H7 = 1,6-C6H11 + i-C4Hs

1-CeH12 + dimethyl 4,4-penthyl 3-ene = 1,3-C¢H11 + dimethyl 4,4-pentene
1-CsH12 + dimethyl 4 4-penthyl 1-ene 2 = 1,4-CgH4¢ + dimethyl 4,4-pentene
1-CeH12 + dimethyl 2,4-penthyl 1-ene 2 = 1,5-CeH11 + dimethyl 2,4-pentene2
1-CgH12 + C4H50 = 1,3-CgH+1 + OC4Hs

1-CsH12 + C4H50 = 1,4-CsH41 + OC4Hs

1-CgH42 + C4H50 = 1,5-CgH41 + OC4Hs

1-CsH12 + C4H50 = 1,6-CgH+1 + OC4Hs

i-CsH4s + 1,3-C6H11 =1-CgH1o + trimethyl 2,2,4-penthyl

i-CgH1s + 1,3-CeH11 = 1-CsH12 + trimethyl 2,2,4-penthyl-4

i-CgH1s + 1,3-CgH11 = 1-CeH12 + trimethyl 2,2,4-penthyl-3

i-CgH1s + n-C3H7 = C3Hg + trimethyl 2,2,4-penthyl

i-CgH1g + Nn-C3H7 = CsHs + trimethyl 2,2,4-penthyl-4

i-CgH1s + n-C3H7 = C3Hg + trimethyl 2,2,4-penthyl-3

i-CgH1s + n-C3H7 = C3Hg + trimethyl 2,2,4-penthyl-3

i-CgH1g + Nn-C3sH7 = CsHs + trimethyl 2,4,4-penthyl

1,3-CeH41 + C7Hg = 1-CgH12 + CsHs5CH>

1,4-CgH41 + C7Hs = 1-CgH12 + CsH5CH>

1,5-CgH11 + C7Hg = 1-CgH12 + CgH5CH2

1,6-CsH11 + C7Hg = 1-CgH12 + CsH5CH2

1,3-CsH11 + CeHs5CH2 = C7Hg + 1,2-CgH 10

1,4-CgH11 + CeHsCH2 = C7Hg + 1,3-CgH 10

1,6-CeH41 + CsH5CH> = C7Hs + 1,6-CgH 10

M. Yahyaouiet al., Proc. Combust. Inst. 31, 385-391 (2007)
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Comparison between neat hydrocarbons ignition delay times and mixture 3 (45% iso-octane, 31.5
toluene, 13.5% 1-hexene, 10% ETBE).

M. Yahyaouiet al., Proc. Combust. Inst. 31, 385-391 (2007)
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Comparison between experimental and computed concentration profiles in JSR for the oxidation of
the Mixture 3 (45% iso-octane, 31.5 toluene, 13.5% 1-hexene, 10% ETBE)

M. Yahyaouiet al., Proc. Combust. Inst. 31, 385-391 (2007)
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Experimental mole fractions of benzene, 1,3-butadiene and formaldehyde obtained from the oxidation
of different initial fuel composition versus temperature in a JSR. (45% iso-octane, 31.5 toluene, 13.5%
1-hexene, 10% ETBE). Mix 1: 0% ETBE; Mix 2: 5% ETBE; Mix 3: 10% ETBE.

M. Yahyaouiet al., Proc. Combust. Inst. 31, 385-391 (2007)
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Comparison between experimental (symbols) and computed (lines) ignition delays of the Mixture 2
and 3 in a shock tube M. Yahyaouiet al., Proc. Combust. Inst. 31, 385-391 (2007)
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5.2 Diesel

Example of Diesel oxidation study: The major components of the diesel fuel studied were n-paraffins

(36.6% by weight), i-paraffins (14.8% w), cycloalkanes (31.4% w) and aromatic hydrocarbons (17.3%

w) including mono- and poly-aromatic hydrocarbons.

The global formula for this diesel fuel was determined to be C15.5H30.
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The reaction mechanism consisted of 2755 reversible reactions involving 377 species.

The rates of reaction were computed from the kinetic reaction mechanism and the rate constants
calculated at the experimental temperature. The rate constants for the reverse reactions were
computed from the forward rate constants and the appropriate equilibrium constants.

The pressure dependencies of P-dependent reactions were taken into account and updated.

The oxidation mechanism for the diesel fuel was obtained by merging the individual oxidation
mechanisms previously validated for the oxidation of n-hexadecane, iso-octane, n-propylcyclohexane,
n-propylbenzene, and 1-methylnaphtalene.

Few ‘coupling reactions’ were included whereas no specific kinetic adjustments were made to better fit
pressure dependences. As in previous work from this group, the proposed kinetic mechanism has a
strong hierarchical structure.

The model-fuel had 4 constituents: n-hexadecane (36.1% by weight, 23.5% vol.), n-
propylcyclohexane (23.1%w, 26.9% vol.), n-propylbenzene (18.7% w, 22.9% vol.), iso-octane (14.7%
w, 19% vol.), and 1-methylnaphthalene (7.4%w, 7.7% vol.).
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Synthetic diesel fuel oxidation in a JSR at 1 atm and ¢ = 0.5. The initial conditions were:
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C155H30, 0.03% ; O2, 2.30% ; N2, 97.60% ; 1=0.1s.
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11200
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The experimental data (symbols) are compared to the computations (lines and small symbols).

K. Mati et al., Proc. Combust. Inst. 31, 2939-2946 (2007)
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Synthetic diesel fuel oxidation in a JSR at 10 atm and ¢ =0.5.
The initial conditions were: C155H30, 0.05% ; O2, 1.38% ; N2, 98.57% ; 7=0.5s.

K. Mati et al., Proc. Combust. Inst. 31, 2939-2946 (2007)
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Synthetic diesel fuel oxidation in a JSR at 10 atm and ¢ =1.0.
The initial conditions were: C155H30, 0.05% ; O2, 0.69% ; N2, 99.26% ; 7=0.5s.

K. Mati et al., Proc. Combust. Inst. 31, 2939-2946 (2007)
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Combustion Institute Summer School, Tsinghua-Princeton June 2025 255



2" example of Diesel oxidation study:

A surrogate Diesel fuel called the IDEA fuel, consisting of 70% n-decane and 30% 1-methyl
naphthalene was formulated previously as part of the Integrated Development on Engine Action
(IDEA) program. This fuel mixture matches both the physicochemical properties and combustion
behavior of a conventional Diesel fuel. The IDEA fuel has properties similar to those of a conventional
Diesel fuel, i.e. it has a normal density of 798 kg/m3 at 20°C, a CN of ca. 53, and hydrogen-to-carbon

ratio of 1.8.

The kinetic oxidation mechanisms of large n-paraffins and aromatics have been developed separately
in several fundamental studies and merged to simulate the oxidation of surrogate gasoline, kerosene,
and Diesel fuels. A long carbon chain n-paraffin compound is highly suitable for representing the
paraffinic fraction of a Diesel fuel because of the high concentration of these chemicals in this kind of
fuel. On the other hand, aromatic hydrocarbons play an important role in soot formation reactions and
must be used in Diesel surrogate mixtures. They also contribute to the reduction of the cool-flame

oxidation of long chain n-alkanes.
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5.3 Jet fuels

Example of early jet fuel oxidation study:
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Oxidation of kerosene in a JSR at 10 atm and t=0.5 s (initial conditions: 1000 ppmv of kerosene TRO,
16500 ppmv of Oy, diluent nitrogen). Model fuel: n-decane/ n-propylbenzene/ n-propyl-cyclohexane

(74% / 14% / 11% mole).
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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Introduction

Kerosene (Jet A, Jet A1, JP-8, TRO) is a complex mixture of alkanes (50-65% vol.), mono- and poly-
aromatics (10-20% vol.) and cycloalkanes or naphtenes (mono- and polycyclic, 20-30% vol.) widely
used in aircraft engines.

100%
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GC/MS analysis of a kerosene TRO sample showing the importance of n-alkanes.
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The compounds identified in kerosene at the highest levels of concentration are n-alkanes.

The average chemical formula for kerosene (Jet A, Jet A-1, TRO, JP-8) differs from on source to
another:

C12H23 in Gracia-Salcedo, C.M., Brabbs, T.A., and McBride, B.J., 1988, NASA Tech. Memorandum 101475,
C11H21 In Edwards, T., and Maurice, L.Q., 2001, J. Propulsion and Power, 17, 461-466,

C11.6H22 in Martel, C.R., 1988, AFWAL/POSF Report, July 15, 1988

C11H22 in Guéret, C., 1989, Thesis, University of Orléans (in French).

C11H23 in Nguyen, H.L., and Ying, S.J., 1990, AIAA-90-2439.

For this study, the adopted formula was C11H22.
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Due to the complexity of the composition of this fuel, it is necessary to use a surrogate model fuel for
simulating its oxidation.

Under high-pressure JSR conditions, the detailed kinetic modeling of kerosene oxidation was initially
performed using n-decane as a model-fuel, since n-decane and kerosene showed very similar oxidation
rates under JSR and premixed flame conditions as reported in:

Dagaut et al., Proc. Combust. Inst., 25, pp 919-926, 1994.

Dagaut et al., J. Chim. Phys. Phys.-Chim. Biol. 92, pp 47-76, 1995.

Cathonnet et al. RTO Meeting Proc. 14, pp 1-9, 1999.

Douté et al. Combust. Sci. and Technol. 106, pp 327-344, 1995.

n-Decane is an acceptable model-fuel for kerosene oxidation as far as modeling the formation of
aromatics is not a major issue since the oxidation of n-decane yields much less aromatics that kerosene.

Therefore, more complex model fuels are necessary to model the formation of aromatics from the
oxidation of kerosene as demonstrated in the literature:

Mawid et al., 2002, AIAA 2002-3876.
Dagaut 2002, Phys. Chem. Chem. Phys., 4, 2079-2094.
Mawid et al. 2003, AIAA 2003-4938.
Mawid et al. 2004, AIAA 2004-4207.
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Surrogate model fuels consisting of n-decane and mixtures of n-decane with simple aromatic
hydrocarbons and cycloalkanes are tested here, mainly under JSR conditions.

The detailed kinetic reaction mechanisms for the pure components of the surrogate model fuel had first
to be validated before merging the sub-schemes (Ristori et al. 2001, Combust. Sci. and Technol., 65,
pp 197-228; Dagaut et al. 2002, Fuel, 81, pp 173-184) to yield a kerosene kinetic reaction mechanism

The study includes:
New experimental results obtained for the oxidation of kerosene in a JSR, over a wide range of
equivalence ratio (0.5 to 2), and temperatures in the range 900-1300 K.

The oxidation of n-decane
under JSR conditions
shock-tube conditions
premixed flame conditions,
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Modeling

For simulating the oxidation of n-decane and kerosene in premixed flames, we used the Premix

computer code.
For simulating the ignition delays of kerosene-air mixtures, we used the SENKIN code.

For the JSR computations, we used the PSR computer code.

The reaction rates are computed from the kinetic reaction mechanism and the rate constants of the
elementary reactions calculated at the experimental temperature, using the modified Arrhenius

equation.

Structure hiérarchisée des mécanismes détaillés

The reaction mechanism used in this study has a strong hierarchical structure.
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The reaction mechanism is based on the comprehensive commercial fuel oxidation mechanism
developed earlier (Dagaut 2002, Phys. Chem. Chem. Phys., 4, 2079-2094) where the rate expressions
of pressure dependent reactions have been updated.

The reaction mechanism used here consisted of 209 species and 1673 reversible reactions.

The rate constants for reverse reactions were computed from the corresponding forward rate constants
and the appropriate equilibrium constants,

Ke = Kforward / Kreverse

calculated using thermochemical data.
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Results: n-decane

The kinetic model was tested against the atmospheric pressure n-decane premixed flame data of Douté
et al. to verify the validity of the proposed kinetic scheme in flame conditions. The experimental

temperature profile reported by the authors was used in the computations.
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Oxidation of n-decane in a JSR: the experimental results consisted of the mole fractions of reactants,
stable intermediates and final products measured at fixed residence time, as a function of T (example:

700 ppmv of n-decane, 7230 ppmv of O, in N2; 0.07 s, 1 atm).
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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Results: Kerosene

For the oxidation of kerosene in a JSR, the experimental results consisted of the mole fractions of the
reactants, stable intermediates and final products measured at fixed residence time, as a function of

temperature.
They are compared to PSR simulations.

To test the effect of the model fuel composition on the computations, we modeled the oxidation of a
stoichiometric mixture kerosene/O2/N> using four different model-fuels:

(1) n-decane
(2) n-decane/n-propylbenzene (74% / 26% mole) mixture
(3) n-decane/n-propylcyclohexane (74% / 26% mole) mixture

n-decane/ n-propylbenzene/ n-propyl-cyclohexane 0 0 o mole) mixture
(4) n-d [ Ib / I loh (74% 1 14% 1 11% le) mixt
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n-Decane was used as a model fuel:

® CH
2 3| 4
10 10° P
p® o OC.H,
o XCiHs
E -3 5 -4 A CH,
g 10 5 107 ¢ V Allene|
(o] © F
© ©
L LC
2 @
] =]
= 10 = 10° A
10-5 9 S A PR B NP B 10°® A 4 < T A A T
900 1000 1100 1200 1300 1400 900 1000 1100 1200 1300 1400
T/IK T/IK
2e-4 + 1,3C,H, 2e-4 —gT3cPD
® 1CH | X CeHg
le-4 AlCiHio le-4 O Toluene
O 1CeH, g y X X
c c r X
i<} kel
S =
§2e— gZe—S— XXDDDDX
L 'S Model x100|
o le- © les E oo
<] ]
= s o® &S o
Mo
+ I o Model x10
2e-6 2e-6 -
[mjm]
1e-6 LA = le-6
900 1000 1100 1200 1300 1400 900 1000 1100 1200 1300 1400
TIK

T/IK

Kerosene oxidation of in a JSR (700 ppmv of kerosene, 11550 ppmv of O, N2; 0.07 s, 1 atm).

1,3-Cyclopentadiene, benzene, and toluene are strongly underestimated!
(1) These results confirm the similitude between n-decane and kerosene kinetics of oxidation
(2) The inclusion of non-paraffin components in the model fuel is necessary to simulate the formation

of aromatics from kerosene oxidation
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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n-decane/n-propylbenzene (74% / 26% mole) mixture as model fuel
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Kerosene oxidation in a JSR (700 ppmv of kerosene, 11550 ppmv of Oz, N2; 0.07 s, 1 atm).

A good agreement between the data and the modeling results for most of the species but 1,3-
cyclopentadiene, benzene, and toluene: benzene and toluene are overestimated

Thus the inclusion of cycloalkanes in the kerosene model fuel is necessary
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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n-decane/n-propylcyclohexane (74% / 26% mole) mixture as model fuel
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Kerosene oxidation in a JSR (700 ppmv of kerosene, 11550 ppmv of Oz, N2; 0.07 s, 1 atm).

A good agreement between the data and the modeling for most of the species but benzene, and toluene

which are strongly underestimated.
Expected: The oxidation of n-propylcyclohexane yields little benzene and toluene.
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% [/ 14% | 11%
mole) as model fuel:
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Kerosene oxidation in a JSR (700 ppmv of kerosene, 11550 ppmv of Oz, N2; 0.07 s, 1 atm).

This mixture was more representative of the composition of kerosene: A good agreement between the
data and the computational results for most of the species, including simple aromatics (benzene,
toluene). Dagaut & Cathonnet, PECS 32, 48-92, 2006
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The three-component model fuel
n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% / 14% | 11% mole)

was selected for modeling the oxidation of kerosene in other experiments
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% [/ 14% | 11%
mole) as model fuel:
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Kerosene oxidation (fuel lean) in a JSR (700 ppmv of kerosene, 23100 ppmv of Oz, N2; 0.07 s, 1 atm).
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% [/ 14% | 11%
mole) as model fuel:
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Kerosene oxidation (fuel rich) in a JSR (700 ppmv of kerosene, 5775 ppmv of Oz, N2; 0.07 s, 1 atm).
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% [/ 14% | 11%
mole) as model fuel:
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Oxidation of kerosene in a JSR at 10 atm and t=0.5 s (initial conditions: 1000 ppmv of kerosene TRO,

16500 ppmv of Oy, diluent nitrogen)
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% [/ 14% | 11%
mole) as model fuel:
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Oxidation of kerosene in a JSR (500 ppmv of kerosene, 8250 ppmv of oxygen, nitrogen diluent; 1.0 s,

20 atm).
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% [/ 14% | 11%
mole) as model fuel:
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Oxidation of kerosene in a JSR at 40 atm and t=2.0 s (initial conditions: 250 ppmv of kerosene TRO,

4125 ppmv of Oz, diluent nitrogen)
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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n-decane/ n-propylbenzene/ n-propyl-cyclohexane (74% [/ 14% | 11%
mole) as model fuel:
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The oxidation of kerosene in premixed flame (Douté et al.) conditions:1 atm, 0.010739794 g/cm?/s,

initial mole fractions: 0.0319 of kerosene, 0.28643 of oxygen.
Dagaut & Cathonnet, PECS 32, 48-92, 2006
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The ignition delays of few kerosene-air mixtures at atmospheric pressure have been reported before;
some of them have been used in several previous modeling efforts showing reasonable agreement with

these data.

10* g
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Ignition delay of kerosene/air mixtures at 20 atm
Ignition delay of kerosene/air mixtures at 1 atm Data: Dean et al. 20" ICDERS (2005);
Starikovskii et al. (2003); Davidson and Hanson,

6th Int. Conf. on Chemical Kinetics, Gaithersburg,
MD (2005).

Dagaut & Cathonnet, PECS 32, 48-92, 2006
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A kinetic analysis of the reaction paths during the oxidation of the kerosene model-fuel at 10 atm, under
stoichiometric conditions indicated that the overall oxidation of the fuel is mostly driven by n-decane
oxidation.

According to the model, at 900 K, the early stages of the fuel oxidation involve the oxidation of n-decane,
n-propylbenzene, and n-propylcyclohexane.

Hydroxyl radicals are the main species involved in the oxidation of the fuel mixture. The oxidation of n-
decane is responsible for the production of these radicals via a complex reaction scheme that can be
summarized as follows:

N-C1oH22 => 3-C10H21, 4-C10H21, and 5-C1oH21
n-C1oH22 => 1-CgH17, 4-CsH17, 2-CsH17, and 3-CgH17

The decyl and octyl radicals isomerize and decompose. Their decomposition yields 1-butyl and 1-propyl
radicals that in turn decompose.

The further reactions in turn yield OH radicals:
1-C4Ho +M => CyHs + CoH4 + M;
1-C3H7+M => CH3 + CoH4 + M;

CoHs + Oz => CoHs + HO;
2 HO => H,0, + Oy;

H.O, + M => OH+ OH + M;
CH3z + HO2, => OH + CH30.
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Combustion Institute Summer School, Tsinghua-Princeton June 2025 290



Synthetic jet fuels

In recent years, research activities on synthetic and bio-derived jet fuels have increased

significantly in order to reduce dependence of air transportation on oil (petroleum).
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The Fischer-Tropsch (F-T) process allows the production of a kerosene type fuel from
synthesis gas also called syngas (CO/H2). Frequently, a synthetic jet fuel is mainly
composed of n-alkanes, iso-alkanes and cyclo-alkanes, but composition varies from one

source to another, e.g.:

Cq Cio

FT-Jet fuel GTL

Cis Syntroleum S-8

C
16
Ci7 Cyg Cyg
15 20 25 3 0 35
Time/min

Cin
| <

Source: Egolfopoulos et al. (USC)
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The very low proportion of aromatic compounds in GtL fuels causes a reduction in emissions

of soot and unburned hydrocarbons™.

The composition of synthetic jet fuel allows also a decrease in emissions of carbon dioxide

and soot**.

These fuels are a good alternative to current conventional oil-derived fuels.

* Corporan et al., 2007, Energy & Fuels 21, pp. 2615-2626; Kahandalawa et al., 2008, Energy & Fuels 22, pp. 3673-3679.

** Rye et al., 2010, Energy & Environmental Science 3, pp. 17-27
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The kinetics of oxidation of alternative jet fuels and representative surrogates studied in
a JSR under the same conditions (temperature, 550-1150 K; pressure, 10 bar; equivalence
ratio, 0.5-2).

To experimentally represent the two synthetic fuels we have designed surrogates
consisting of few representative species among n-decane, iso-octane, decalin, n-

propylcyclohexane, and n-propylbenzene.

The oxidation of 2 representative mixtures, 100% GtL (C10.45H22.03; H/C=2.20; M=148.28
g mol'; CN=56*; density=724 g L', from Shell), and 100% CtL (C11.06H21.3s, H/C=1.934;
M=154.12 g mol'; CN=41*; density=799 g L', from Sasol) was performed in a JSR at 10

atm.
* ASTM D7668
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A detailed kinetic reaction mechanism was developed and validated by comparison with

the experimental results obtained here and previously*.

The model was also evaluated under shock tubes conditions by using data from the

literature™*.

* Mzé Ahmed, A., Dagaut, P., Hadj-Ali, K., Dayma, G., Kick, T., Herbst, J., Kathrotia, T., Braun-Unkhoff, M., Herzler, J.,
Naumann, C., and Riedel, U., 2012, Energy & Fuels, 26(10), pp. 6070-6079.

Dagaut, P., Karsenty, F., Dayma, G., Diévart, P., Hadj-Ali, K., Mzé-Ahmed, A., Braun-Unkhoff, M., Herzler, J., Kathrotia, T., Kick,
T., Naumann, C., Riedel, U., and Thomas, L., 2014, Combustion and Flame, 161(3), pp. 835-847

**Wang, H. W., and Oehlschlaeger, M. A., 2012, Fuel, 98(1), pp. 249-258.
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MODELING

The CHEMKIN Il computer code was used for the kinetic modeling of the oxidation of the

two fuels studied in a jet-stirred reactor.

The chemical kinetic reaction mechanism used contained 2,430 species and 10,962

reversible reactions.

Surrogate model fuels were used for the kinetic modeling
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MODELING

e The synthetic kerosene GtL was represented by a mixture of 28.1%w n-decane, 30% 2-

methylheptane, 33.1% 3-methylheptane, and 8.8% decalin.

This corresponds very well with the GtL composition (GtL%/surrogate% in mass: 28.1/28.1,

63.1/62.8, 8.8/8.8 in mass of n-alkanes, iso-alkanes, and naphthenes, respectively).

e The synthetic kerosene CtL was represented by a mixture of 5.7%w n-decane, 11.5%
iso-octane, 24.8% 3-methylheptane, 16.1% n-propylcyclohexane, 28.3% decalin, 4% n-

propylbenzene, and 9.6% tetralin.

This corresponds very well with the CtL composition (CtL%/surrogate% in mass: 5.7/5.7,
36.3/36.3, 16.1/16.1, 28.3/28.3, 4/4, 9.6/9.6 of n-alkanes, iso-alkanes, mono-naphthenes,

di-naphtenes, mono-aromatics, and naphteno-aromatics, respectively).
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MODELING

Sub-models for surrogates components were taken from our previous modeling efforts. n-
Decane, iso-octane, 2-methylheptane and 3-methylheptane studied previously” were used
to represent the n- and iso-paraffins present in the synthetic fuels. Naphthenes were
represented by n-propylcyclohexane* and decalin® in the model. Mono-aromatics were

represented by n-propylbenzene*** and tetralin****represented naphteno-aromatics.

Experimental data obtained in JSR were compared to simulations in order to validate

the chemical kinetic mechanism developed in this work.

# Sarathy et al., 2011, Combustion and Flame, 158(12), pp. 2338-2357.

Karsenty et al., 2012, Energy & Fuels, 26(8), pp. 4680-4689.

Mze-Ahmed et al., 2012, Energy & Fuels, 26(7), pp. 4253-4268.
* Ristori, A et al., 2001, Combustion Science and Technology, 165(1), pp. 197-228.
**  Dagaut et al., 2013, Proceedings of the Combustion Institute, 34(1), pp. 289-296.
***  Dagaut et al., 2002, Fuel, 81(2), pp- 173-184.
**** Dagaut et al., 2013, Energy & Fuels, 27(3), pp. 1576-1585.
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EXPERIMENTAL RESULTS GTL VS. SURROGATE
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Concentrations profiles obtained from the oxidation of the GTL and the representative
mixture in a JSR at 10 bar, 1 =0.7 s and ¢ =1. The initial mole fractions were: xc1.=0.1%,
X02=1.6%, xn2=98.3% mole. The GTL data (large symbols) are compared to those for the
surrogate (lines and small symbols, 650 ppm of n-decane, 375 ppm of iso-octane, and 95

ppm of decalin).
Dagaut et al., ICDERS 2015
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EXPERIMENTAL RESULTS CTL VS. SURROGATE
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Concentrations profiles obtained from the oxidation of the CTL and the representative
mixture in a JSR at 10 bar, 1 =0.7 s and ¢ =1. The initial mole fractions were: xc1.=0.1%,
X02=1.5%, xn2=98.4% mole. The CTL data (large symbols) are compared to those for the
surrogate (lines and small symbols, 163 ppm of n-decane, 365 ppm of iso-octane, 197 ppm

of n-propylcyclohexane, 317 ppm of decalin, and 175 ppm of n-propylbenzene).
Dagaut et al., ICDERS 2015
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EXPERIMENTAL RESULTS SPK VS. SURROGATE

Very similar experimental profiles obtained for the SPKs and their Surrogates

=~ Kinetic modeling of the oxidation of these surrogates for model validation
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SURROGATE OX’n, EXPERIMENTAL VS. MODELING
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Concentrations profiles obtained from the oxidation of a GTL representative mixture in a
JSR at 10 bar, 1 =0.7 s and ¢ =1. The data (large symbols) are compared to the modeling
(lines).

Dagaut et al., ICDERS 2015
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MODELING GTL OX’n

Composition of final model fuel to simulate the oxidation of the GtL fuel (C10.45H23.06;
H/C=2.20; CN=57.94; 737.7 g mol’; M=148.46 g mol") 2

Component Initial concentrations (ppm)
n-decane 294
2-methylheptane 390
3-methylheptane 431
decalin 04

21.209 X Csge4H1s.97 since we used 1209 ppm of model fuel to represent 1000 ppm of GtL
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GTL OX’n, EXPERIMENTAL VS. MODELING
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Concentrations profiles obtained from the oxidation of the GTL fuel in a JSR at 10 bar, 1 =0.7

s and ¢ =1. The data (large symbols) are compared to the modeling (lines).
Dagaut et al., ICDERS 2015
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GTL OX’n, EXPERIMENTAL VS. MODELING

Modeling improvements:
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Comparison of computed and experimental concentrations profiles obtained from the
oxidation of the GTL fuel in a JSR at 10 bar, T =0.7 s and ¢=1 (experimental data: large
symbols; previous model (Dagaut et al., 2015, CNF, 161(3) 835-847): dotted lines; this model:

continuous lines).
Dagaut et al., ICDERS 2015
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MODELING CTL OX’n

Composition of final model fuel to simulate the oxidation of the CtL fuel (C11.06H21.5;
H/C=1.953; CN= 32.7; 815.7 g mol"!; M=154.32 g mol")?

Component Initial concentrations (ppm)
n-decane 62
[so-octane 155
3-methylheptane 335
n-propylcyclohexane 197
decalin 316
n-propylbenzene 52
tetralin 112

51.229 X CoH17.4 since we used 1229 ppm of model fuel to represent 1000 ppm of CtL

Combustion Institute Summer School, Tsinghua-Princeton June 2025 306




RESULTS AND DISCUSSION: CTL OX’n, EXPERIMENTAL VS. MODELING
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Sensitivity analyses and reaction pathways analyses

c2h3+02<=>ch2hco+o
c2h3+02<=>ch2ot+hco
h+o02<=>0toh
ho2+oh<=>h20+02
cot+oh<=>co2+h
co+oh<=>co2+h
ch3+ho2<=>chd4+02
ch3+ho2<=>ch3o+oh
c2h4+oh<=>c2h3+h20
ch2hco<=>ch3+co
ac3h5+ho2<=>c3h50+oh

=

-04 02 0 02 04 06
Sensitivity Coefficient

Sensitivity analyses for CO2 at 1030 K
during the oxidation of the GtL fuel in a
JSR (¢ =1, 10 bar, residence time of 0.7 s

c2h3+02<=>ch2hco+o
cZ2h3+02<=>ch2ot+hco
h+o2<=>o+oh
h+o02(+M)<=>ho2(+M)
ho2+oh<=>h20+02
cot+oh<=>co2+h
co+oh<=>co2+h
ch3+ho2<=>ch4+02
ch3+ho2<=>ch3o+oh
ac3h5+ho2<=>c3h50+oh
c6hSo<=>c5h5+co
c6hSo+h(+M)<=>c6hSoh(+M)

-04 -02 0 0.2 0.4
Sensitivity Coefficient
Sensitivity spectrum for CO2 during the
oxidation of the CtL fuel in a JSR at ¢=1
and T=1030 K (P =10 barand 1= 0.7 s).

These computations show the influence of OH radicals during the oxidation of these fuels.
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Sensitivity analyses and reaction pathways analyses

Contribution (%)
R

Contribution of the surrogate components to
the formation of OH (blue) during the
oxidation of the GtL fuel in a JSR (¢ =1, 830
K, 10 bar, residence time of 0.7 s). For
comparison, the concentrations of the
surrogate components are shown in grey.
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Contribution of the surrogate components
to the formation of OH (blue) during the
oxidation of the CtL fuel in a JSR (¢ =1,
830 K, 10 bar, residence time of 0.7 s).
For comparison, the concentrations of the
surrogate components are shown in grey
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Ignition Delay Times

Wang and Oehlschlaeger* measured the ignition delay of a synthetic jet fuel derived from
natural gas and provided by Shell (C10.40H22.88) in a heated shock tube between 650 and
1290 K at 20 atm and ¢=1.0 (1.286% fuel, 20.74% O, 77.97% N>). In order to simulate the
high temperature regime (T > 1000K), they used the surrogate model developed by Naik et

al.** (n-decane: 61%, n-dodecane: 11%, iso-octane: 28% in mole).

Their results showed that the data measured by Wang and Oehlschlaeger are similar to the

model predictions at high temperature.
We verified the validity of our model for the ignition in shock tube using the experimental
data® for GtL and the data of Vasu et al.*** for n-dodecane ignition.

*Wang and Oehlschlaeger, 2012, Fuel 98, pp. 249-258
**Naik et al., 2011, Comb. Flame 158, pp. 434-445

***Vasu et al. , 2009, Proc. Combust. Inst. 32, pp. 173-180
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Ignition Delay Times in Air

T ! T ! T
|:| GtL data, Wang and Oehlschlaeger
............ Naik et al.

Comparison between ignition delay times
measurements by Wang and Oehlschlaeger
(Shell GtL, open symbols) and Vasu et al.
(n-dodecane, stars), modeling of Naik et al.

ignition delay (us)

10! _ _ (dotted line), the present modeling results
07 o8 o5 1 11 1z 13 14 for GtL (dashed dotted line) and n-
1000/T (K1) dodecane predictions (solid line).

e The computed ignition delays > Naik’s computations.
Same trends as in the experiments but overestimation of ignition delays (ca. x4 @ 900K).

e The new computed ignition is in better agreement with the data than previously, but the

model is too slow.
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Further studies of synthetic jet fuels oxidation

The very low proportion of aromatic compounds in GtL fuels causes a reduction in emissions
of soot and unburned hydrocarbons*. The composition of synthetic jet fuel allows also a

decrease in emissions of carbon dioxide and soot™*.

These fuels are a good alternative to current conventional oil-derived fuels.

* Corporan et al., 2007, Energy & Fuels 21, pp. 2615-2626; Kahandalawa et al., 2008, Energy & Fuels 22, pp. 3673-3679.

** Rye et al., 2010, Energy & Environmental Science 3, pp. 17-27
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A GtL, a Naphthenic cut (NC) and a mixture NC/GtL were oxidized in a JSR:

Properties GtL NC* NC/GtL
Formula C10.45H23.06 C12.64H23.64 C11.54H23.35
M (g mol") 148.44 175.32 161.83
H/C ratio 2.20 1.87 2.02
DCN# 58.0 39.3 45.8
Density (g I'') 737.7 863.1 800.3

* Naphthenic cut: a representative commercial solvent that fits with typical chemical

composition of product coming from coal or biomass liquefaction.

¥ measured by PAC Cetane ID 510, ASTM D7668
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MODELING

A detailed kinetic reaction mechanism was developed and validated by comparison with
the experimental results obtained here and previously*.

The CHEMKIN Il computer code was used for the kinetic modeling of the oxidation of the
two fuels studied in a jet-stirred reactor.

The chemical kinetic reaction mechanism used contained 2,384 species and 10,368
reversible reactions.

* Mzé Ahmed, A., Dagaut, P., Hadj-Ali, K., Dayma, G., Kick, T., Herbst, J., Kathrotia, T., Braun-Unkhoff, M., Herzler, J.,
Naumann, C., and Riedel, U., 2012, Energy & Fuels, 26(10), pp. 6070-6079.

Dagaut, P., Karsenty, F., Dayma, G., Diévart, P., Hadj-Ali, K., Mzé-Ahmed, A., Braun-Unkhoff, M., Herzler, J., Kathrotia, T., Kick,
T., Naumann, C., Riedel, U., and Thomas, L., 2014, Combustion and Flame, 161(3), pp. 835-847
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MODELING

Surrogate model fuels for the kinetic modeling:

The GtL was represented by a mixture of n-decane, 2-methylheptane, 3-methylheptane,
and decahydronaphthalene (28.1%, 30%, 33.1%, and 8.8% in mass, respectively) which
corresponds very well with the GtL mass composition (28.1%, 62.8%, 8.8% of n-alkanes,
iso-alkanes, and naphthenes, respectively). The model fuel matches well the GtL cetane
number (57.94 vs. 58) and its H/C ratio (2.2 vs. 2.2).

The substitution of the highly branched iso-octane used in a previous model by weakly
branched iso-alkanes (2-methylheptane and 3-methylheptane) is beneficial, particularly for

better controlling iso-butene production.
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MODELING

Surrogate model fuels for the kinetic modeling:

The naphthenic cut was represented by a mixture of decahydronaphthalene,
tetrahydronaphthalene, n-propylcyclohexane, 2-methylheptane, and 3-methylheptane
(27.6%, 23.5%, 10.8%, 12.1%, 25%, and 13% in mass, respectively) which is in line with
the naphthenic cut composition (89.9% of paraffins and cycloparaffins and 10.1% of

aromatics in mass).
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MODELING

e Composition of the model-fuel to represent the GtL* fuel in the computations (C10.45H23.06;
H/C=2.20; DCN= 57.94; M=148.46 g mol")#

Component Initial concentrations (ppm)
n-decane 294
2-methylheptane 390
3-methylheptane 431
decahydronaphthalene 94

¥1.209 X Cs.64H1s.97 since we used 1209 ppm of model fuel to represent 1000 ppm of GtL

*GiL: 28.1% n-alkanes, 62.8% iso-alkanes, 8.8% cyclo-alkanes, and 0.2% aromatics. The
composition of the fuels and their molecular weight were determined through gas

chromatography (http.//www.alfa-bird.eu-vri.eu/)
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MODELING

e Composition of the model-fuel to represent the naphthenic cut® in the computations
(C12.63H23.26; H/C=1.84; DCN= 39.7; M=174.82 g mol")#

Component Initial concentrations (ppm)
decahydronaphthalene 350
tetrahydronaphthalene 312

n-propylcyclohexane 150
2-methylheptane 384
3-methylheptane 200

$1.396 X Cg.05H16.66 Since we used 1396 ppm of model fuel to represent 1000 ppm of NC

*NC: 4.7% paraffins, 85.2% cyclo-paraffins, 9.6% monoaromatics and 0.5% polyaromatics.
The composition of the fuels and their molecular weight were determined through gas

chromatography (http.//www.alfa-bird.eu-vri.eu/)
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MODELING

e Composition of the model-fuel representing the GtL/naphthenic cut mix (C11.54H23.09;
H/C=2.0; DCN= 48.8; M=161.57 g mol")* in the simulations

Component Initial concentrations (ppm)
n-decane 147
decahydronaphthalene 222
tetrahydronaphthalene 156
2-methylheptane 387
3-methylheptane 316
n-propylcyclohexane 75

¥1.3024 X CggsH17.73 since we used 1302.4 ppm of model fuel to represent 1000 ppm of

GtL/naphthenic cut mixture.
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MODELING

Sub-models for surrogates components were taken from our previous modeling efforts. n-
Decane, 2-methylheptane and 3-methylheptane studied previously* were used to represent
the n- and iso-paraffins present in the synthetic fuels. Naphthenes were represented by n-
propylcyclohexane* and decahydronaphthalene ** in the model. Tetrahydronaphthalene

“**represented naphtheno-aromatics.

Experimental data obtained in JSR were compared to simulations in order to validate

the chemical kinetic mechanism.

I Sarathy et al., 2011, Combustion and Flame, 158(12), pp. 2338-2357.

Karsenty et al., 2012, Energy & Fuels, 26(8), pp. 4680-4689.

Mze-Ahmed et al., 2012, Energy & Fuels, 26(7), pp. 4253-4268.
* Ristori, A et al., 2001, Combustion Science and Technology, 165(1), pp. 197-228.
**  Dagaut et al., 2013, Proceedings of the Combustion Institute, 34(1), pp. 289-296.
***  Dagaut et al., 2013, Energy & Fuels, 27(3), pp- 1576-1585.
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RESULTS AND DISCUSSION

The data showed three regimes of oxidation: the cool flame regime (T < ~750 K), the
negative temperature coefficient (~640-750 K) and the high-temperature regime (>750 K).

RH
o +x¢ -XH

. 2 R’ + Olefin
Olefin + HO» = R > 4+ Olefin

O2 T

RH v RO>
ROOH < RO —» RO + RO + O
'\ HO> T
o) / v

— loz\

Cyclic Ether + OH Olefin + Carbonyl

OOQOOH Compound
+ OH
v
HOOQ'OOH
v
oQooH + OH

'

Decomposition «— OQ’'0O + OH
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RESULTS AND DISCUSSION: GTL OX’n, EXPERIMENTAL VS. MODELING
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Comparison of experimental and computed concentrations profiles obtained from the
oxidation of 1000 ppm of the GtL fuel with 16215 ppm of Oz in a JSR at 10 bar, T=1 s and
¢=1 (experimental data: large symbols; computations: lines; dilution by N>).

P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433—440 (2017)
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RESULTS AND DISCUSSION: NC OX’n, EXPERIMENTAL VS. MODELING
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Comparison of computed and experimental concentrations profiles obtained from the
oxidation of 1000 ppm of the naphtenic cut with 18570 ppm of O2 ina JSR at 10 bar, 1=1s
and @=1 (experimental data: large symbols; computations: lines; dilution by N>).

P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433—440 (2017)
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RESULTS AND DISCUSSION: NC/GTL OX’n, EXPERIMENTAL VS. MODELING
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Comparison of computed and experimental concentrations profiles obtained from the
oxidation of 1000 ppm of the naphtenic cut/GtL fuel mixture with 17378 ppm of Oz in a JSR
at 10 bar, 1 =1 s and ¢=1 (data: large symbols; computations: lines; dilution by N>).

P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433—440 (2017)
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RESULTS AND DISCUSSION: NC/GTL OX’n, MODELING

(5) C2Hz+ O, 5 CHHCO +O
(6) C2H3z + O2 5 CH20 + HCO
(47)H+ 0,5 O+ OH
(55) H + Oz + M) 5 HO (+ M)
(60) HO, + OH S H,0 + 0,
(73) CO+OH S CO2+H

. . : . : (74) CO+OH S CO2+H

SF — . (128) CHs; + HO, 5 CH4 + O;

- — (138) CH3; + HO2 5 CH30 + OH
5 2 . (267) C2Hs + OH S CH; + H,0

128 F — (659) a-C3Hs + HO, S C3HsO + OH

267 - —

858 - I :I. |

-0.2 0 0.2 0.4
Sensltivity

Sensitivity analyses for CO2 at 1040 K during the oxidation of 1000 ppm of the naphthenic

cut/GtL fuel mixture in a JSR (¢ =1, 10 bar, residence time of 1 s).

P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433—440 (2017)
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RESULTS AND DISCUSSION: NC/GTL OX’n, MODELING
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(64) H202 + OH 5 H.0 + HO,

(138) CH; + HO2 S CH30 + OH

(218) CH302H (+ M) 5 CH30 + OH (+ M)
(356) CH2HCO + O 5 CH:0 + CO + OH
(578) C3HsO0H1-2 5 C3HgO + OH

(657) C3He1OH200 S CH3HCO + CH:0O + OH
(659) aC3Hs + HO2 S C3HsO + OH

(1343) C4Hs100H3J S C4HsCY103 + OH
(3368) CsHs + HO2, S CsHs0 + OH

(85) CH20 + OH S HCO + H20

(417) CH3HCO + OH S CH3CO + H,0

(653) C3Hs + OH S C3Hg1OH

(992) C4Hs + OH S C4H7-1 + H,0
(2677-2680) n-C1oH22 + OH S H20 + RC1oH21
(3747) prCHX + OH 5 RprCHX + H,0
(8454) OH + decalin S H.0 + Rdecalin
(8628) OH + tetralin & H20 + Rtetralin
(8796-8800) CsH1s-3 + OH S CgH17-R + H20
(9685-9691) CsH13-2 + OH S CgH17-R + H20

Consumption/Production of OH at 790 K during the oxidation of 1000 ppm of the
naphtenic cut/GtL fuel mixture in a JSR (¢ =1, 10 bar, residence time of 1 s).

P. Dagaut, P. Diévart. Proc. Combust. Inst. 36, 433—440 (2017)
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5.4 Biofuels
5.4.1 RME (biodiesel)

Several vegetable oils have also been tested for transport purpose, but their high viscosity, low
volatility, and low cetane number (>40) leaded to incomplete combustion. Therefore, the concept of
using bio-diesel, consisting of alkyl esters of these vegetable oils obtained by transesterification with

an alcohol (mostly methanol, but also ethanol)

SrA=-—<co-c=de>-Fa FR 5 — <o e D O <=
= OS> FT = 2+ = SR A=< ——— 2 > - C = (CDDCD—C == -+ SiIvcerol
CrA == F = FR oo cori=
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Vegetable oil composition

Vegetable Fatty acid composition (% weight)
oil 16:1 | 18:0 | 20:0 | 22:0 | 24:0 | 18:1 220 18:2 | 183
Corn 11.67 | 1.85 | 0.24 | 0.00 | 0.00 | 25.16 | 0.00 | 60.60 | 0.48
Cottonseed | 28.33 | 0.89 | 0.00 | 0.00 | 0.00 | 13.27 | 0.00 | 57.51 | 0.00
Crambe 20.7 | 0.70 | 2.09 | 0.80 | 1.12 | 18.86 | 58.51 | 9.00 | 6.85
Peanut 1138 | 239 | 1.32 | 252 | 1.253 | 4828 | 0.00 | 3195 | 0.93
Rapeseed 3.49 0.85 | 0.00 | 0.00 | 0.00 64.4 0.00 2230 | 8.23
Soybean 11.75 | 315 | 0.00 | 0.00 | 0.00 | 25.26 | 0.00 50.53 | 6.31
Sunflower 6.08 3.26 | 0.00 | 0.00 | 0.00 | 16.93 | 0.00 73.73 | 0.00
Castor 0.00 0.00 | 0.00 | 0.00 | 0.00 57.0 0.00 0.00 | 11.2
Palm 10.2 3.7 | 0.00 | 0.00 | 0.00 | 22.8 0.00 5% 8.6

l
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Early modeling efforts

To model combustion of fuels, to predict accurate combustion performance and emission
characteristics, a good knowledge of their kinetics of combustion is essential. Since rapeseed is one
of the main crop growing Europe, we focus our study on the kinetic of rapeseed oil methyl ester
(RME) oxidation.

RME is a complex mixture of C14, C16, C1s, C20, and Cz2 esters with highly saturated carbon chain. The
composition of the fuel was 0.1% C14, 5.4% C1s, 92.0% C1s, 2.0% C20, and 0.5% C22, with mostly one

double bond on the acid chain. The equation for the oxidation of RME can be written as follows:
C17.92H3302 + 25.17 O, = 17.92 CO, + 16.5 H2O0.

Because of the complexity of this fuel, it is difficult to propose a detailed kinetic scheme for its
oxidation, although that could be achieved building on previous kinetics studies involving simpler

esters
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The oxidation of RME in a JSR at 1 atm (¢ = 1, 0.07 s). The data (large symbols) are compared to the

computations (lines, small symbols), n-hexadecane as surrogate model-fuel, initial mole fractions: n-

hexadecane, 0.0005625; oxygen, 0.011; nitrogen, 0.9884375).

P. Dagaut et al., Proc. Combust. Inst. 31, 2955-2961 (2007)
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hexadecane, 0.0005625; oxygen, 0.012585; nitrogen, 0.9868525).

P. Dagaut et al., Proc. Combust. Inst. 31, 2955-2961 (2007)
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5.4.2 B30

Diesel engines contribute significantly to overall carbon dioxide emissions whereas concerns about
green-house effect and air pollution favor the investigation of sustainable and environment-friendly

Diesel fuels.

Biofuels such as fatty acid methyl esters (FAME) are mixed in variable quantities (e.g. BS contains 5%

in volume of FAME and B30 contains 5% in volume of FAME) with fossil Diesel fuel.
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Introduction

Reduction of engines emissions in terms of carbon oxides and polyaromatic hydrocarbons (PAH)

have been reported, indicating bio-diesel may help preserving our environment.
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Reduction of carbon footprint in Europe by increased biodiesel fraction (EU 2010: 5.75% energy HV)
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Introduction (cont'd)

The so-called bio-Diesel is a mixture of FAME produced from transesterification of triglycerides (oils)
with methanol. Current biodiesel fuels are mixtures of ca. C12-C22 highly saturated carbon-chain esters.
Their complex composition implies the use of surrogate model-fuels for simulating their combustion

kinetics.
Whereas early kinetic studies have demonstrated a strong similitude between the oxidation of rapeseed

oil methyl esters (RME) and that of n-hexadecane, long-chain methyl esters exhibiting cool-flames were

also proposed as bio-Diesel model fuels.
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Introduction (cont'd)

A fossil Diesel fuel consists of an even more complex mixture of thousands of medium-high molecular
weight hydrocarbons that participate in thousands of pyrolysis and oxidation reactions. Therefore,

surrogates are needed to represent Diesel fuel with a limited number of components.

In Europe, the 'IDEA' surrogate Diesel fuel (70% n-decane + 30% 1-methyl naphthalene) was
formulated previously as part of the ‘Integrated Development on Engine Action’ (IDEA) program.

This fuel mixture matches both the physicochemical properties and combustion behavior of a
conventional Diesel fuel. The IDEA fuel has properties similar to those of a conventional Diesel fuel,

i.e. a normal density of 0.798 g/L at 20°C, a CN of ca. 53, and a hydrogen-to-carbon ratio of 1.8.
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Introduction (cont'd)

The kinetics of oxidation of a commercial B30 bio-Diesel fuel and a B30 surrogate bio-Diesel fuel
were measured and compared.

The experiments were performed in a jet-stirred reactor (JSR), in order to:

(1) provide new information on the kinetic of oxidation of a B30 bio-Diesel fuel over a wide range of
conditions,

(2) verify the chemical kinetics of oxidation of a simple B30 surrogate can represent that of a
commercial B30 Diesel fuel, and

(3) propose and validate a detailed kinetic reaction mechanism for the oxidation of a B30 bio-Diesel

fuel from low to high temperatures.

Combustion Institute Summer School, Tsinghua-Princeton June 2025 336



Experimental conditions in the JSR (10300 ppm of C, 560-1030 K, t=0.6 & 1s)

Initial concentrations (in ppm for the fuel, in mole fraction for Oz and N2) | ¢ |P/atm
B30 N-C1oH22 C11H10 CoH1502 Oz
600 - - - 0.0574 0.25| 10
600 - - - 0.0287 05| 10
600 - - - 0.0144 1 10
600 - - - 0.0096 1.5 10
- 490 210 300 0.0597 0.25| 10
- 490 210 300 0.0284 0.5 6,10
- 490 210 300 0.0142 1 16,10
- 490 210 300 0.0095 1.5 10

B30 bio-Diesel fuel surrogate: 49% n-decane, 21% 1-methyl naphthalene, and 30% methyl octanoate

in mole, i.e. C10.3H15.402

Commercial low-S B30 bio-Diesel fuel (CN 54.8, 84.1% C, 12.9% H, and 3% O by wt., d= 845 ¢g/L at

15°C, FAME fraction was rapeseed oil methyl ester): C16.47H30.8300.5
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Modeling

The computations were performed using the PSR computer code.

The detailed kinetic reaction mechanism is based on previous studies of the oxidation of methyl
octanoate, large alkanes, 1-methylnaphtalene and diesel + IDEA surrogate [H.P. Ramirez L, K. Hadj-Ali, P.
Diévart, G. Moréac, P. Dagaut, Energy Fuels 24(3) (2010) 1668-1676] where cross-reactions between the main fuel
components were considered: metathesis of n-decane with phenyl, benzyl, 1-naphtylmethyl, 1-naphtyl,
and indenyl radicals; reactions of decyl radicals with 1-naphtaldehyde; reactions of -C1oH2102 with

toluene, 1-methylnaphtalene, 1-naphtylmethyl, 1-naphtaldehyde, benzyl, phenyl, and 1-naphtyl.

The proposed kinetic scheme (7748 reversible reactions and 1964 species) represents the 1st attempt

to propose a kinetic scheme for the oxidation of Diesel-biodiesel fuel mixtures.
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Experiment results

e Oxidation of a B30 bio-Diesel fuel surrogate, 49% n-decane, 21% 1-methyl naphthalene, and 30%

methyl octanoate in mole

e Oxidation of a commercial low-sulfur B30 bio-Diesel fuel

They were studied in a jet-stirred reactor over a wide range of conditions: ¢=0.25-1.5; temperature in

the range 560-1030 K, mean residence time constant: 0.6 s at 6atm and to 1 s at 10atm.

This allowed the observation of the cool-flame oxidation regime, the negative temperature coefficient

(NTC) regime, and the high-temperature oxidation regime.
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Experiment results (cont'd)

More than 20 species were identified and measured by FTIR, CG-MS/FID/TCD. Experimental
concentration profiles were obtained for Hz, H.O, O, CO, CO,, CH20, CH4, CoHes, CoHs4, C2oHo,
formaldehyde, acetaldehyde, CsHs, 1-CsHs, 1,3-Cs4Hs, 1-CsH10, 1-CeH12, 1-CsH1s, n-decane, methyl
octanoate, and 1-methylnaphthalene. Other minor species detected at ppm levels were not quantified

nor used in the modeling.

The concentration profiles measured from the oxidation of the commercial B30 and the B30 surrogate

over the low-, intermediate-, and high-temperature oxidation regimes were compared:
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Experiment results (cont'd)
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Experimental concentration profiles from the oxidation of a commercial Diesel fuel (filled symbols), the
B30 fuel (grey symbols), the B30 surrogate (empty symbols) in a JSR at 10 atm, ¢=0.25, and 1= 1s.

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375-382 (2011)

The concentration profiles obtained for CO, CO2, H20, and Oz during the oxidation of the 2 biofuels

are very similar over the entire range of experimental conditions; the commercial Diesel fuel used in

the B30 mixture reacts similarly.

Combustion Institute Summer School, Tsinghua-Princeton June 2025 341



Modeling results

The concentration profiles obtained for the oxidation of the B30 surrogate fuel were compared to the

model predictions.

The present model was also successfully tested for the oxidation of pure n-decane, pure methyl

octanoate, and pure 1-methylnaphtalene under similar JSR conditions.

Furthermore, the proposed model, not including the methyl octanoate chemistry, was used to simulate
the oxidation of commercial and surrogate Diesel fuels [H.P. Ramirez L, K. Hadj-Ali, P. Diévart, G. Moréac, P. Dagaut,

Energy Fuels 24(3) (2010) 1668-1 676]
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Modeling results (cont’d) Results at 6 atm

6e-4 0.008
O ncl0h22 O co Z O ch2o
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The B30 surrogate Diesel fuel oxidation in a JSR at 6 atm, 7= 0.6s, and ¢= 0.5. The experimental data
(large symbols) are compared to the computations (lines with small symbols).

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl naphthalene + 300ppm of methyl octanoate

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375-382 (2011)
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Modeling results (cont’d)
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The B30 surrogate Diesel fuel oxidation in a JSR at 6 atm, 1= 0.6s,

and ¢= 1. The experimental data (large symbols) are compared to

the computations (lines with small symbols).

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl

naphthalene + 300ppm of methyl octanoate

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375-382 (2011)
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Modeling results (cont’d)

Mole Fraction
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The B30 surrogate Diesel fuel oxidation in a JSR at 10 atm, 1= 1s, and ¢= 0.5. The experimental data
(large symbols) are compared to the computations (lines with small symbols).

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl naphthalene + 300ppm of methyl octanoate

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375-382 (2011)
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Modeling results (cont’d) Results at 10 atm
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The B30 surrogate Diesel fuel oxidation in a JSR at 10 atm, 1= 1s, and ¢= 1. The experimental data
(large symbols) are compared to the computations (lines with small symbols).

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl naphthalene + 300ppm of methyl octanoate

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375-382 (2011)
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Modeling results (cont’d) Results at 10 atm
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The B30 surrogate Diesel fuel oxidation in a JSR at 10 atm, 1= 1s, and ¢= 1.5. The experimental data
(large symbols) are compared to the computations (lines with small symbols).

N.B. B30 Surrogate= 490ppm of n-decane + 210ppm of 1-methyl naphthalene + 300ppm of methyl octanoate

H.P. Ramirez L. et al., Proc. Combust. Inst. 33(1), 375-382 (2011)
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Modeling results (cont’d)
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Modeling results (cont’d)

According to the present computations, at 620 K and in fuel-lean conditions (¢=0.5 at 10 atm), OH
radicals are mostly responsible for the oxidation of n-decane (ca. 95%), methyl octanoate (ca. 89%),

and 1-methylnaphtalene (ca. 80%) via
n-C1oH22 + OH = C1oH21 + H20
CoH1802 + OH = CgH1702 + H20
C10H7CH3 + OH = C4oH7CH2 + H20

Under these conditions, their formation mainly occurs via the decomposition of alkylhydroperoxy

(02QO0H and OQ'OOH) deriving from the oxidation of n-decane and methyloctanoate.
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Modeling results (cont’d)

Above ca. 750 K, the transition to the high-temperature oxidation regime occurs. The fuel is rapidly

consumed through metathesis reactions with OH and larger amounts of products are formed.

The model predicts the experimentally observed overall reactivity of the fuel and products' formation,
although it tends to underestimate the overall rate of oxidation above ca. 800 K. This behavior results

from the too strong inhibiting effect of 1-methylnaphtalene on n-decane and methyl octanoate oxidation.

We did not attempt to improve the present simulations by modifying the kinetic parameters used in
previous modeling efforts in order to keep this model valid for representing the neat oxidation of the

surrogate fuel components, i.e. n-decane, 1-methylnaphtalene, and methyl octanoate.
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Modeling results (cont’d)

At 1040 K, OH radicals are still mostly responsible for the oxidation of n-decane (ca. 80%), methyl

octanoate (ca. 80%), and 1-methylnaphtalene (ca. 89%) via the same reactions.
The reactions of n-decane with O (ca. 10%) and H (ca. 5%) also contribute to its consumption.

Also, methyl octanoate reacts with H (ca. 8%). Similarly, H-atoms also consume 1-methylnaphtalene

(ca. 8%).

Under these conditions, the production of ethylene mainly occurs via B-scissions of alkyl radicals (1-
butyl and 1-propyl 30%) whereas the oxidation of ethyl radicals by O, also contributes to ethylene

formation (20%).
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Modeling results (cont’d) Local, first-order sensitivity analyses

Sensitivity analyses showed that at 620K, besides the Co-C; reactions, the overall reactivity is positively
sensitive to the rates of oxidation of n-decane by OH, and the peroxidation of methyl octanoate radicals,

l.e. to reactions
CH3(CH2)sCH(+)C(=0O)OCH3 +02 <=> CH3(CH2)sCH(O0.)C(=0)OCH3
CH3CH2CH2CH2CH2CH2CH(OQO.)C(=0)OCH3 <=> CH3CH2CH>CH2CH(.)CH.CH(OOH)C(=0)OCH3

As expected, at 1040K, the system is mostly sensitive to the kinetics of the Co-C1 sub-scheme, i.e.

H+O,<=> OH+O
HO2+OH <=> H,0+0>

CO+0OH <=> CO>+H
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5.4.3-Pentanol

Because they are renewable, biofuels are attracting great interest as transportation fuels. They can be
locally produced, may be less polluting, sometimes more biodegradable, and could reduce net
greenhouse gas emissions [1].

Ethanol accounts for over 90% of all biofuels' production worldwide [2]. However, mixing stability
issues may appear with simple alcohols whereas larger alcohols would mix better with petrol-derived
fuels thanks to their longer alkyl carbon chain.

Since 1-butanol was announced to be sold soon as a gasoline blending constituent [3], Dagaut and
Togbé studied the oxidation of butanol-gasoline surrogate mixtures (85-15 vol%) in a JSR at 10 atm
and a kinetic reaction mechanism was derived for modeling the oxidation of butanol-gasoline

surrogate mixtures [4].

1. A. Demirbas, Prog. Energy Combust. Sci. 33 (1) (2007) 1-18.
. IEA World Energy Outlook (2006), ISBN 92-64-10989-7, 500p.
3. Dupont Corp. (2006) available at
http://www2.dupont.com/Biofuels/en_US/facts/BiobutanolFactsheet.html
4. P.Dagaut and C. Togbé, Energy and Fuels 22 (2008) 3499-3505.
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1-Pentanol is among the longer carbon-chain alcohols that could be blended with conventional fuels.
However, so far, it received little attention since only engine experiments were reported in the

literature [5,6] whereas bio-pentanol could be produced [7,8].

5. M. Gautam, D.W. Martin, Proc Instn Mech Engrs Part A 214 (2000) 165-182.

6. M. Gautam, D.W. Martin, D. Carder, Proc Instn Mech Engrs Part A 214 (2000) 497-511.

7. A.F.Cann, J.C. Liao, Appl. Microbiol. Biotechnol. 85 (2010) 893-899.

8. K. Zhang, M.R. Sawaya, D.S. Eisenberg, J.C. Liao, Proc. Natl. Acad. Sci. USA 105 (2008) 20653-
20658.

Combustion Institute Summer School, Tsinghua-Princeton June 2025 354



0.025 5e-4
r I H cH20
L r O cHa
g K c2H4
0.02 4e-4 K ] caHe
L /\ 1-C4Hs
- c > 1-C5H10
[=} o
$0.015 5 3e-4
S <
LL LL
[} 5]
° 0.01 S 2e-4
= =
le-4
04
900 1000 1100
TIK TIK
0.001 2e-4
m 5 C5H120H F 5 CH3CHO
L H2 F 2-Propenal
K Pentanal ¥ Penta?]al
1.5e-4
c c
il o
I3] 3]
© < L
L I le-4
o9 9 [
o o
= = [
5e-5
oo L 0 Ly .
1200 1200
T/IK TIK

Experimental (large symbols) and computed (lines and small symbols) concentration profiles obtained

from the oxidation of 1-pentanol ina JSR at ¢ =0.35, P =10 atm, 1= 0.7s.
C. Togbé et al., Proc. Combust. Inst. 33(1), 367-374 (2011)

Combustion Institute Summer School, Tsinghua-Princeton June 2025 355



0.015 ‘
L ~ W cH20
+ O cHa
r K c2H4
Se-4 1 X [] caHe
/\ 1-CaH8
c c [ < 1-C5H10
il 0.01 o de-4 |
S 3 :
I L 3e-4 |
Q L Q C
] [=] L
=0.005 S 2e4 |
le-4 |
O IIIIIIIIIII 0- VDA =g =R
1000 1100 1200 800 900 1000 1200
TIK T/IK
0.0012 2e-4
- Il cHscHo
O 2-Propenal
0.001 % Pentanal
1.5e-4
c L
2
°
© L
L le-4
P L
(=]
= I
5e-5
0 P d
1100 1200

T/IK

T/IK

Experimental (large symbols) and computed (lines and small symbols) concentration profiles obtained

from the oxidation of 1-pentanolina JSR at¢ =0.5, P =10 atm, 1=0.7s.
C. Togbé et al., Proc. Combust. Inst. 33(1), 367-374 (2011)

Combustion Institute Summer School, Tsinghua-Princeton June 2025 356



0.008 8e-4
B cH2o
O cHa
¥ c2Ha
X [] c3He
-4 /\ 1-caHs
CO'OOG - Ge-4 % %% O 1-C5H10
9 o
— —
Q O
[ ©
'L 0.004 [ 4e-4
Q Q
o =]
= =
0.002 2e-4
0 ' s 0
800 900 1000 1100 1200
T/IK T/IK
0.001 - -
C5H120H L CH3CHO
O H2 1.5e-4 % O 2-Propenal
> Pentanal i 3 Pentanal
8e-4
c c
j=l i)
S 6e-4 - S
[ @©
— S L
LL LL
[¢h) [¢}] B
5 4e-4 - > |
= = 5e-
2e-4 - L
0 25t - - . 0 e L=
800 900 1000 1100 1200 1100 1200

T/IK T/IK

Experimental (large symbols) and computed (lines and small symbols) concentration profiles obtained

from the oxidation of 1-pentanolina JSRat¢ =1, P =10 atm, 1= 0.7s.
C. Togbé et al., Proc. Combust. Inst. 33(1), 367-374 (2011)

Combustion Institute Summer School, Tsinghua-Princeton June 2025 357



0.001

0.004
h W cH20
O cHa
X c2Ha
L 8e-4 - % X K [ care
0.003 ¥ % /\ 1-CaHs
c I - XK < 1-C5H10
S S s 0060
— = 6e-4
g I 8 ® O % %0
1 0.002 L o S
[} [ ) B
° ° 4e-4 -
= [ =
0.001
r 2e-4 -
o l& 0 i k4 L O
1000 1100 1200 800 1100 1200
T/IK TIK
0.0025
I W csHi20H | X W cHscHo
: O H2 O O 2-Propenal
L K Pentanal O r X Pentanal
0.002 C O 3 x
le-4 -
'g 0015 : O s I
g [ g
L LL
Lo.001 2 sos |
= =00
Se-4 [ i
0 :: S Lo 0 ;:; ;‘-;h" T A mr
800 900 1000 1100 1200 1100 1200
T/IK T/IK

Experimental (large symbols) and computed (lines and small symbols) concentration profiles obtained

from the oxidation of 1-pentanolina JSRat ¢ =2, P =10 atm, 1= 0.7s.
C. Togbé et al., Proc. Combust. Inst. 33(1), 367-374 (2011)

Combustion Institute Summer School, Tsinghua-Princeton June 2025 358



1-pentanol

cC5H100H 4—-C5H110 | —p. €C5H1oOH

CaH7 i \/ /

OH,H

C4H9CO 4—‘

C4HgCHO

OzT M

—pp bC5H1oOH T»aC5H10

A/i OH

C2H4 CO

dCgH100H __p, aCsH190OH CpH5 C3H50H CsHg13
OH HO9
CH»20O CyHg OH
H 0))
OH \/ i’ x| |cH3
>C3H7 CH3CHO C3Hg CoHg %
OH,H
HCO, CHs A/l HO2 |y OH CyHg
X \
M|Os | M CoHy CH3CO \/
\/ C3Hs50 Acrolein
co cHzgo OHH l—» v >
H OH,H
HO2 CoH3 CH3z _p CHyg
OH o RH
‘ 2 CoH3CO
Cz) | p.CO
2 CHoCHO P

L H o cHyco .. o

Reaction paths from the kinetic modeling of 1-pentanol oxidation in a JSR at 10 atm.

C. Togbé et al., Proc. Combust. Inst. 33(1), 367-374 (2011)

Combustion Institute Summer School, Tsinghua-Princeton June 2025

359



0.7

0.6 - <

£ 0'55_ £ ge-al ¢

- C o L o

OU) 0.45_ — 4e_4__
0.3F 2e-4- 8
0_2: | L | L | | L | O— | L | L | L | L |

0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 1.4
Equivalence ratio Equivalence ratio

Laminar burning velocities of 1-pentanol/air mixtures at T=423 K and 1 atm (a) and burnt gases
Markstein lengths (b).

C. Togbé et al., Proc. Combust. Inst. 33(1), 367-374 (2011)

Combustion Institute Summer School, Tsinghua-Princeton June 2025 360



5.4.4 2-Butanone

Methyl Ethyl Ketone (MEK) is a four carbon linear ketone that can be produced through either
chemical and biological conversion of furfural [1] or oxidation of 2-butanol. Besides its potential
application as a fuel substitute [2], MEK is also used as solvent in the paint and adhesive industry.
With these considerations, and since MEK is the smallest ketone exhibiting secondary C-H bonds, this

fuel is a molecule of choice to investigate the specificities of keto groups oxidation.

[1] E.R. Sacia, M. Balakrishnan, M.H. Deaner, K.A. Goulas, F.D. Toste, A.T. Bell, ChemSusChem, 8
(10)(2015) 1726-1736.
[2] F. Hoppe, U. Burke, M. Thewes, A. Heufer, F. Kremer, S. Pischinger, Fuel, 167 (2016) 106-117.

Combustion Institute Summer School, Tsinghua-Princeton June 2025 361



e MEK '\ 600 @ MEK

Mole fraction [ppm]

L & coy2) ~ . a00. * CO(/2)
. S5 =2

e

700

E
(=%
=
=
=]
E
]
[=]
E T —
700 800 800 1000 1100 1200 1300 700 800 800 1000 1100 1200 1300 700 a00 900 1000 1100 1200 1300
400 . . . 400

® CH, e CH,

= 30| 4 CO,(/10) 0l A CO,(10)
=5

=

S 200 o5 200

2

8 0} 100 -

£

[=3

= o 1]

700 800 S00 1000 1100 1200 1300

E
=N
=
c
=2
=
E
1]
[=3
=
700 800 900 1000 1100 1200 1300 700 800 900 1000 1100 1200 1300 700 800 900 1000 1100 1200 1300
100 v v v v 100 — v v v v . . -
% ® CHO e CHO -
80} + o=
= 0 |-
5
g prys
&
@ 20t
=
o
700 800 900 1000 1100 1200 1300 700 800 900 1000 1100 1200 1300 700 800 900 1000 1100 1200 1300
250 T T T T 160 T - T ¥ v &0 T Ca v ¥
* MVK | ® MVK ,"‘
. 2001 4=0.5 i A CH, 1 120 & CH_ ' Lt
= A . | 28 ¥
= , k
— ! b
= BO | . 1)
g ' )
d i A
¥ .
g o P
@© .
=) cank2?
ol =
700 800 900 1000 1100 1200 1300 700 800 900 1000 1100 1200 1300 700 80D 900 1000 1100 1200 1300
Temperature [K] Temperature [K] Temperature [K]

Comparison between experimental (symbols) and computed (Solid line: this work, dashed line: Serinyel et al. [10])
concentration profiles for the oxidation of MEK at 10 atm at different equivalence ratios.

Combustion Institute Summer School, Tsinghua-Princeton June 2025 362



Rate of production analysis
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Pyrolysis and high temperature oxidation
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5.4.5 ML and DEE

e Among proposed chemical platforms, levulinic acid is one of the most interesting

Alkyl levulinates produced from levulinic acid esterification contain keto and ester functional
groups.The synthesis of these compounds starts with hemicellulose and cellulose hydrolysis to xylose
and glucose, respectively. They can be converted to furfural and 5-hydroxymethylfurfural which in turn

can be converted to levulinic acid.

Methyl levulinate (DCN =7.8) is considered here.

e Another interesting biofuels, produced via dehydration of bio-ethanol, is diethyl ether
suitable for C.I. engines (CN >125).
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MODELING

The CHEMKIN Il computer code was used for the kinetic modeling of the oxidation of the

two fuels studied in a jet-stirred reactor.

The chemical kinetic reaction mechanism for ML oxidation contained 704 species involved
in 3870 reversible reactions; that for DEE oxidation contained 471 species involved in

2861 reversible reactions™.

Core mechanism: Co-C3 oxidation mechanism extended to model the oxidation of other

oxygenates [a]

[a] S. Thion et al., Combust. Flame 185 (2017) 4-15; A.M. Zaras et al., Energy & Fuels 31 (6) (2017) 6194-6205.

* sub-mec included in DBE oxidation mechanism.
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MODELING: ML Oxidation

We previously reported computed rate constants for H-abstractions by OH, H and CH3s on
ML [a].

H-abstraction reactions by other radicals were not found to be sensitive, and simple

analogies were applied with no specific corrections for k(T).

[a] S. Thion, A.M. Zaras, M. Szori, P. Dagaut, Phys. Chem. Chem. Phys. 17 (36) (2015) 23384-23391
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MODELING: ML Oxidation

Additional theoretical calculations using the same computational strategy were performed in
order to elucidate the decomposition pathways of ML and to obtain missing thermochemical

properties.

These calculations were carried out using the Gaussian09 code [a] at the G3//MP2/aug-cc-
pVDZ and G3B3 levels of theory.

[a] M.J. Frisch et al., Gaussian 09, Revision D.01; Wallingford CT, 2009
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MODELING: ML Oxidation

The presence of oxygenated groups, and in particular of the ester group, favors molecular
reactions. Ethyl (and larger) esters can easily decompose by H—transfer to produce an acid
and an olefin. This type of reaction cannot take place here because a carbon chain is
needed on the alcohol side, while methyl levulinate has only one carbon. Therefore, other
possible pathways for the molecular reaction decomposition of methyl levulinate were
explored by theoretical chemistry methods and a reaction similar to that of esters has been

identified. It involves a complex TS:

One TS, two concerted steps

zh_; j\ﬂ/:O‘f _iVCliSation Dt?oiid&
| J
" * e .

@
R P QJ
Hydrogen transfer Cyclizationand J

C-0 bond scission

Structure of the transition state during the molecular reaction yielding methanol and 5-methyl-2(3H)-

furanone from ML.
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MODELING: ML Oxidation

The high-pressure limit rate constant was computed at the G3B3 and G3//MP2/aug-cc-
pVDZ levels of theory by following the strategy described in our previous work. We

assumed hindered rotors cancel out, as in the work of Al Abbad et al.[a].

This molecular reaction is much slower than that observed in the case of esters: Its rate
constant is 100 times lower at 1500 K and almost 200 times at 1000 K.

However, its low activation barrier allows it to play an important role.

[a] M. Al Abbad, B.R. Giri, M. Szori, A. Farooq, Proc. Combust. Inst. 36 (1) (2017) 187-193.
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MODELING: ML Oxidation

A second reaction has also been identified. It involves another interaction between the two
oxygenated groups in ML. It consists of a H-transfer from the C-"5" to the oxygen atom in
C=0 of the ester group. This transfer is accompanied by cyclization between the oxygen
atom of the ketone group and C—"1" and the formation of a C=C double bond to give 2-

methylene-5-methoxy-5-hydroxy-tetrahydrofuran ("oxy THF"):

o N
/k/YO\ — j.,‘: O:J — ﬁl/ox

0 J?.J
J

« oxXyTHF »
Formation of 2-methylene-5-methoxy-5-hydroxy-tetrahydrofuran.

The rate constant for this reaction was calculated with G3B3 and G3//MP2/aug-cc-pVDZ
levels of theory.
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MODELING: ML Oxidation

The a-angelica lactone is likely to undergo a molecular decomposition reaction similar to

that of cyclopentanone yielding methyl vinyl ketone and CO:

O

MR S

"
HEC\&». co

O

R HaC~ { + CO

Molecular decomposition of a-angelica lactone.

The rate constant for this reaction was calculated using the G3B3 method and the transition

state theory.
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RESULTS: ML Oxidation

12 intermediate stable species were identified and quantified in addition to the reactants
(O2, ML) and the final products (H20, CO>).

No reactivity below 750K
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RESULTS: ML Oxidation
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RESULTS: ML Oxidation
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RESULTS: ML Oxidation
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Consumption of ML and production of methanol during the oxidation of ML in a JSR.

Methanol production starts at the same temperature as fuel consumption (around 850 K)
and in the same proportions for the 3 equivalence ratios.

Differences are observed ~1000 K, when the consumption of methanol > formation. These
experimental observations indicate that a large fraction of the fuel is consumed by
molecular reactions yielding methanol.
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RESULTS: ML Oxidation
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MODELING: DEE Oxidation

e Beta-scission reactions of fuel radicals and QOOH radicals are adopted from the CBS-
QB3 calculations of Sakai et al. [a], and from our previous calculations on DBE [b].

e Other reactions related to low-temperature chemistry are taken analogous to our previous
DBE study [b].

e Unimolecular decomposition reactions of DEE were taken from the study of Yasunaga et
al. [c].

e Thermochemistry of the fuel, fuel radical as well as all related low-temperature species
were taken from the theoretical study of Sakai et al. [a], and for other species these were
calculated using using the group additivity method of Benson [d].

[a] Y. Sakai et al. Proceedings of the Combustion Institute 36 (2017) 195-202.
[b] S. Thion et al. Combustion and Flame 185 (2017) 4-15.

[c] K. Yasunaga et al. Journal of Physical Chemistry A 114 (2010) 9098-9109.
[d] S.W. Benson, Thermochemical Kinetics, Wiley, New York, 1976.
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RESULTS: DEE Oxidation
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RESULTS: DEE Oxidation
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RESULTS: DEE Oxidation
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RESULTS: DEE Oxidation
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RESULTS: DEE Oxidation
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RESULTS: DEE Oxidation
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[a] F. Gillespie et al. Energy 43 (2012) 140-145.
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Further investigations of DEE cool-flame
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Further investigations of DEE cool-flame
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Further investigations of DEE cool-flame: ROOH and diols
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Further investigations of DEE cool-flame: KHPs
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122.0558) after H/D exchange with DO

Formation of C4HgO4* (m/z 121.0492) ion during the low
temperature oxidation of DEE in a JSR (data: circles;

simulation: line).

Combust. Flame 228, 340-350 (2021) https://doi.org/10.1016/j.combustflame.2021.02.007
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Further investigations of DEE cool-flame: HOMs
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Formation of highly oxygenated molecules during the low temperature oxidation of DEE in a JSR: (e) di-keto-
hydroperoxides CsHeOs corresponding to CsHsOs~ ion (m/z 133.0142). (A) di-keto-dihydroperoxides CsHsO7
corresponding to C4HsO7~ ion (m/z 165.0041).

Combust. Flame 228, 340-350 (2021) https://doi.org/10.1016/j.combustflame.2021.02.007
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THF cool-flame: KHPs formation

Initial radicals formed by H-atom abstraction on THF
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Energy & Fuels 35(9) 7242-7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291
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THF cool-flame: ROOH formation
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Formation of C4HgO3 in a JSR where 5000 ppm of fuel are oxidized. Analyses were performed in FIA and APCI (+)
mode. The data (symbols) represent the signal recorded at m/z 105.0545, scaled to the maximum computed mole

fraction (Iine, Fenard et aI) Energy & Fuels 35(9) 7242-7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291
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THF cool-flame: KHPs formation
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Formation of C4HsO4 in @ JSR where 5000 ppm of fuel = Consumption of THF under the same conditions based
are oxidized. Analyses were performed in FIA and APCI on m/z 73.0647 (C4HoO"). The data (symbols) are

(+) mode. The data (symbols) represent the signal compared to simulations (lines).

recorded at m/z 119.0338 (C4H704"), scaled to the

KHPs maximum computed mole fraction

Energy & Fuels 35(9) 7242-7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291
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THF cool-flame: KHPs formation
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Chromatographic separation on a Hypercarb PGC column (100% ACN, 100 uL/min, 40°C) of KHPs isomers (C4HeO4)
obtained by THF oxidation at 590 K. The APCI + mode was used.

Energy & Fuels 35(9) 7242-7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291
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THF cool-flame: KHPs formation (ALS data)
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Left: Experimentally observed photoionization efficiency curve of m/z = 118.0266 (C4H604) (symbols) after
molecular-beam sampling of intermediates of THF oxidation in a jet-stirred reactor from 8.5 to 10.0 eV (left panel)
and 9.5 to 11.0 eV (right panel). The experimentally observed ionization thresholds are indicated with white boxes
and are compared with theoretically predicted ionization energies (marked in gray) of the six conceivable keto-

hydroperoxide isomers. Right: Kinetic modeling using the model of Fenard et al.

From Hansen et al., DOI: 10.1021/acs.jpca.9b07017
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THF cool-flame: HOMs formation
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Formation of C4HsO7 in a JSR where 5000 ppm of fuel are oxidized. Analyses were performed in FIA and APCI (-)
mode. The data (symbols) represent the signal recorded at m/z 167.0191 (C4H;0O7).

Energy & Fuels 35(9) 7242-7252 (2021) https://doi.org/10.1021/acs.energyfuels.0c03291
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Ammonia oxidation
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Data (symbols) and computed (lines) results for NH3 oxidation in a JSR: 1000 ppm of NH3, 7=100ms;
¢=0.1. Models: (a), (b), (c), and (d).

[a] A.A. Konnov, Combust. Flame 156 (11) (2009) 2093-2105.
[b] Y. Song, H. Hashemi, J.M. Christensen, C. Zou, P. Marshall, P. Glarborg, Fuel 181 (2016) 358-365.
[c] J.Otomo, M. Koshi, T. Mitsumori, H. lwasaki, K. Yamada, Int. J. Hydrogen Energy 43 (5) (2018) 3004-3014.

[d] P. Dagaut, P. Glarborg, M.U. Alzueta, Prog. Energy Combust. Sci. 34 (1) (2008) 1-46.
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Computed (lines) and literature experimental (symbols) results for NHz-air flames at 1 atm.

The kinetics of the reactions NH2 + H — NH + H, and HNO + H — NO + H; were updated (Otomo et al., 2018) to
better simulate burning velocities of ammonia in air.

Dagaut, CST (2019) https://doi.org/10.1080/00102202.2019.1678380
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Ammonia oxidation boosted by NO:
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Impact of the initial concentration of NO on NH3 conversion. Experimental results obtained in a JSR at
1 bar, 1000 ppm NH3, T=100 ms, ¢=0.1, 0 ppm (open symbols), 500 ppm (small black symbols), and
1000 ppm (large black symbols) of NO.

P. Dagaut, CST(2019) https://doi.org/10.1080/00102202.2019.1678380
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Ammonia oxidation boosted by NO:

Reaction pathway analyses were performed to delineate the mechanism responsible for the mutual sensitization of
ammonia and nitric oxide. The computations shows that it occurs via several reaction pathways leading to OH

production, which is the main species involved in ammonia oxidation. In the present conditions HO2 is mainly

produced via:
NNH+O2 — N2+HO>
and
H+O2+M — HO2+M.
The production of OH results from a sequence of reaction including
NH2+NO — NNH+OH
NNH — No+H
H+O2; — OH+O

NO+HO,; — NO, + OH.
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Effect of trace amount of Nitric Oxide (NO) addition on ammonia autoignition in a rapid compression machine
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G.J. Gotama et al
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Issues

“The chaotic state in parameter values for nitrogen chemistry in combustion was alerted in
the past by others, and similar concerns are raised in the present work. Future ammonia
modeling studies should properly justify the thermo-kinetic parameters they use, and
especially justify any deviation from established state-of-the-art values.

Ammonia oxidation modeling was shown to suffer from the "many-model" problem. An
accurate and consistent set of thermochemical and kinetic parameters is necessary. The
present work suggests a comprehensive set of thermodynamic parameters and

recommends rate coefficient values for cases in dispute among recent models.”

“Thermodynamic and Chemical Kinetic Parameters in Ammonia Oxidation: A Comparison of Recent Studies and
Parameter Recommendations” by A. Grinberg Dana, K. Kaplan, M. Keslin, C. Cao, and W.H. Green, Energy
&Fuels (2025)]]
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SUMMARY

Gasoline
Diesel

Jet fuel

Biofuels: biodiesel, ketones, alcools, ethers, levulinates. Emphasis on low-T products

Ammonia
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