TSINGHUA-PRINCETON-COMBUSTION INSTITUTE 2022 SUMMER SCHOOL ON COMBUSTION

COMBUSTION FUNDAMENTALS OF FIRE SAFETY

José Torero University College London July 11-14, 2022

TSINGHUA-PRINCETON-COMBUSTION INSTITUTE

Schedule					
Beijing	July 11	July 12	July 13	July 14	July 15
Time	(Mon.)	(Tue.)	(Wed.)	(Thu.)	(Fri.)
			Mechanism		Mechanism
08.00			Reduction and		Reduction and
			Stiff		Stiff
08.00			Chemistry		Chemistry
~			Solvers		Solvers
11.00			Tianfeng Lu		Tianfeng Lu
			VMN:		VMN:
			52667557219		52667557219
		Virtual		Virtual	
*10.00		Poster		Lab	
10.00		Session		Tour	
~		10:00~12:00		10:00~12:00	
12.00		VMN:		VMN:	
		388239275		231842246	
14:00	Fundamental of Flames			Combustion in Microgravity	
~	Suk Ho Chur VMN: 4239931		anies	and M	icroscale
17:00			1g 310/	Kaoru Maruta	
Session I	V WIN. 42577515174			VMN: 71656262918	
14:00	Soot Markus Kraft VMN: 39404905340			Current Status of Ammonia	
~				Com	bustion
17:00				Willian	n Roberts
Session II				VMN: 80	506726244
19:00	Combustion Chemistry and Kinetic Mechanism Development				
~	Tiziano Faravelli				
22:00	VMN: 35989357660				
Session I					
19:00	Combustion Fundamentals of Fire Safety José Torero VMN: 57002781862				
~					
22:00					
Session II					

2022 SUMMER SCHOOL ON COMBUSTION

Note:

¹Session I and Session II are simultaneous courses.

²VMN: Voov Meeting Number

Guidelines for Virtual Participation

1. General Guidelines

• Tencent Meeting software(腾讯会议) is recommended for participants whose IP addresses

locate within Mainland China; Voov Meeting (International version of Tencent Meeting) is recommended for other IP addresses. The installation package can be found in the following links:

a) 腾讯会议

https://meeting.tencent.com/download/

- b) Voov Meeting https://voovmeeting.com/download-center.html?from=1001
- All the activities listed in the schedule are "registrant ONLY" due to content copyright.
- To facilitate virtual communications, each participant shall connect using stable internet and the computer or portable device shall be equipped with video camera, speaker (or earphone) and microphone.

2. Lectures

- The lectures are also "registrant ONLY". Only the students who registered for the course can be granted access to the virtual lecture room.
- To enter the course, each registered participant shall open the software and join the conference using the corresponding Voov Meeting Number (VMN) provided in the schedule; only participants who show unique identification codes and real names as "xxxxx-Last Name, First Name" will be granted access to the lecture room; the identification code will be provided through email.
- During the course, each student shall follow the recommendation from the lecturer regarding the timing and protocol to ask questions or to further communicate with the lecturer.
- For technical or communication issues, the students can contact the TA in the virtual lecture or through emails.
- During the course, the students in general will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.

3. Lab Tour

- The event will be hosted by graduate students from Center for Combustion Energy, Tsinghua University and live streamed using provided Voov Meeting Number.
- During the activity, the participants will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.
- Questions from the virtual participants can be raised using the chat room.

4. Poster Session

- The event will be hosted by the poster authors (one Voov Meeting room per poster) and live streamed using provided Voov Meeting Number.
- During the activity, the participants will not be allowed to use following functions in the software: 1) share screen; 2) annotation; 3) record.
- Questions from the virtual participants can be raised using the chat room or request access to audio and video communication.

Teaching Assistants

• Fundamentals of Flame (Prof. Suk Ho Chung)

TA1: Hengyi Zhou (周恒毅); zhouhy19@mails.tsinghua.edu.cn

TA2: Xinyu Hu (胡馨予); hxy21@mails.tsinghua.edu.cn

• Combustion Chemistry and Kinetic Mechanism Development (Prof. Tiziano Faravelli) TA1: Shuqing Chen (陈舒晴); chen-sq19@mails.tsinghua.edu.cn

TA2: Jingzan Shi (史京瓒); sjz21@mails.tsinghua.edu.cn

• Current Status of Ammonia Combustion (Prof. William Roberts) TA1: Yuzhe Wen (温禹哲); wyz20@mails.tsinghua.edu.cn

TA2: Haodong Chen (陈皓东); chd20@mails.tsinghua.edu.cn

• Soot (Prof. Markus Kraft)

TA1: Yuzhe Wen (温禹哲); wyz20@mails.tsinghua.edu.cn

TA2: Haodong Chen (陈皓东); chd20@mails.tsinghua.edu.cn

• Combustion Fundamentals of Fire Safety (Prof. José Torero)

TA1: Xuechun Gong (巩雪纯); gxc19@mails.tsinghua.edu.cn

TA2: Weitian Wang (王巍添); wwt20@mails.tsinghua.edu.cn

• Combustion in Microgravity and Microscale (Prof. Kaoru Maruta)

TA1: Hengyi Zhou (周恒毅); zhouhy19@mails.tsinghua.edu.cn

TA2: Xinyu Hu (胡馨予); hxy21@mails.tsinghua.edu.cn

• Mechanism Reduction and Stiff Chemistry Solvers (Prof. Tianfeng Lu)

TA1: Shuqing Chen (陈舒晴); chen-sq19@mails.tsinghua.edu.cn

TA2: Jingzan Shi (史京瓒); sjz21@mails.tsinghua.edu.cn

Combustion Fundamentals of Fire Safety The Grenfell Tower Fire:

Failing to Understand Complexity in Tall Building Design

> José L. Torero University College London United Kingdom

How could this happen?

- \odot 100 + buildings tested 100% failure
- \circ 10 + buildings being evacuated in the UK
- o 5 + buildings being evacuated in Germany
- Several buildings being investigated in the US (including several hotels)
- Several buildings being investigated in Australia (including hospitals) ... as you know
- ... this is only the beginning

Andraus Building Sao Paulo, Brazil, February 24th, 1974

MOVING MANKIND TOWARD SAFETY FROM FIRE

Neo200 (February 3rd, 2019)

- "Cigarette blamed for Vic apartment fire" 0
- "Cladding audit found Melbourne apartment tower posed 'moderate' fire safety risk (Victorian Cladding Taskforce)"
- "While most of the building is not clad at all, where any cladding is used it is compliant with VBA [Victorian Building Authority] standards," Neo200 tweeted in June 2017.
- "This building is extremely safe, it's around 90 per cent made out of concrete panel construction, there's only about a 10 per cent mix of ACM panels," Sahil Bhasin (building inspector) told ABC Radio Melbourne"
- "We didn't hear the alarm until about 15 minutes ago. We thought it was a few blocks down"
- "It was smoky through the stairwell and then when we heard it was on the floor that we were supposed to be on we thought, someone's looking after us"
- "The fire occurred, the sprinklers came on and, assisted with the MFB, the fire was doused."
- Mr Bhasin, who is the general manager of Roscon, said it appeared the building's fire plan had worked "perfectly"
- "I'll be pushing for a nationwide ban on combustible cladding really to further 0 protect Victorians from being exposed to unacceptable fire risk (VCT)"

The Key Changes

The building envelope
New construction methodologies
Flammable insulation materials – encapsulation
etc ...

... it is not "<u>one</u>" problem!

Fire Safety Strategies

Prescriptive Design Performance Based Design

Fire Safety Strategies

- Evacuation
 - Detection
 - Alarm
 - Displacement away from the fire
 - Crowd management
- Compartmentalization
 - Slows fire growth
 - Minimizes smoke spread
- Response
 - Automatic (fire suppression)
 - External
 - Internal
- Structural Integrity

Why is this important? Impact of External Fire Spread

Adequate Travel Distances Protected Egress Paths

Effective Detection

Compartmentalization

Fire Brigades: Defend in Place

Structural integrity – Given a 1 Floor Fire

How do things change?

- Detection
- Egress

etc ...

- Protection of egress paths compartmentation
- Active fire suppression: Sprinklers
- Structural integrity
- Fire Brigade operations

Complex Building Systems

- Complex: Building systems are "multi-purpose" (energy, stability, durability, comfort, life cycle, fire barriers, etc.)
- Dependent on labour skill and cost: Tolerances, installation times, modification during construction, etc.
- If the objective is to guarantee encapsulation then this is the problem that needs to be solved!

Encapsulation

Protective Layers

How do we establish performance for encapsulation/ protective layers?

Complexity

- External fires
 change everything
 and severely
 expose building
 occupants
- The fire safety strategy is designed for "no" external flame spread
- How can performance be assessed?

Flammability to Encapsulation = Complexity

- Challenged our understanding of how to achieve quality, safe, robust, resilient infrastructure
 - Design principles
 - Design practises
 - Performance assessment
 - Regulatory frameworks
 - Professional boundaries
 - Integrated design
 - Definition of competence
 - o ... etc.

<complex-block><complex-block>

Performance

... we know perfectly well how to do it ...

... but it requires **"bespoke"** performance protocol for each particular system ... there is no standardize test because we are testing **"system behaviour"**: Building + Envelope

... Past: One test for all materials ... Today: A bespoke performance protocol for each system

Or ... Congregation Spaces (Theatres)

Successful evacuation

• Empire Palace Theatre

- o 9 May 1911
- Disastrous fire on stage
- o 3000 audience evacuated in 2.5 minutes
- **11** deaths backstage
- o http://en.wikipedia.org/wiki/Edinburgh Festival Theat re

• Post-war building studies report

- Fire grading of buildings, HMSO, 1952
- 2.5 minute clearing time for a space!

Egress Time (t_e)

 $t_e = t_{de} + t_{pre} + t_{mov}$

- $\circ t_e$ Egress time
- $\circ t_{de}$ Detection time
- *t_{pre}* Pre-Movement time
- $\circ t_{mov}$ Displacement time

Detection time (t_{de})

• Depends on the technology used but it is generally much smaller than all other times $(t_{de} \approx 0)$

$$t_e = t_{pre} + t_{mov}$$

George

Rhode Island Night Club

Choice of Materials

- The growth of the fire needs to be limited to enable egress to occur under ideal conditions
- If flames spread too fast then panic is induced
 Egress is unpredictable
- \circ If flames spread too fast there is not enough time to evacuate before reaching t_f

Pre-Movement Time (t_{pre})

 Purely statistical – can be very long and brings great uncertainty

Displacement time (t_{mov})

Based on experiments

Code Requirements

- Untenable conditions (t_f)
 - If the space is standardized then t_f can be assumed constant

Minimum width

$$\circ t_f > \frac{d_{max}}{V_e} + \frac{N}{W_p} + t_{pm}$$

Maximum egress
 distances are defined so
 t_{mov} can be neglected

Software

- Commercial
 Codes:
 Simulex,
 Exodus, etc.
- Freeware:
 FDS-(evac),
 etc.

Software

\circ Computations of t_{mov}

- Complex geometry
- Precision also depends of available data and t_{pre}

○ Ideal application:

 Shopping centres, infrastructure with very large surface area and multiple egress paths, cross flow, etc.

Example

	Evacuation trai	1 ASERI	buildingEXODUS	PedGo	Simulex
Total building	8.78 min	ca. 9 min	ca. 8.5 min	ca. 8 min	ca. 8 min
2nd floor	50–149 s	40–82 s	$38-74 \mathrm{s}$	44–94 s	44-82 s
4th floor	$45-75 \ s$	35–86 s	49–73 s	50-82 s	41–86 s
5th floor	61–101 s	36–87 s	35–83 s	42–89 s	$42-90 \mathrm{~s}$
6th floor	31–102 s	42-82 s	35-78 s	41 - 95 s	42–85 s
7th floor	67–132 s	43–96 s	$37-77 \ s$	39–96 s	43–95 s
10th floor	51 - 102 s	33–117 s	41–83 s	39–92 s	43–90 s
15th floor	48–155 s	38–83 s	38–81 s	$45-88 \mathrm{~s}$	$4280~\mathrm{s}$

Hand calculations

• Very similar results

<section-header>

Timeline

- 1st floor: 10 sec
- 3 floors: 30 sec
- 8 floors: 60 sec
- 16 floors: 120 sec
- 25 floors: 180 sec
- Building: 240 sec

explosion? o What is the difference between a fire and an explosion? o Non-premixed Flame o Pre-mixed Flame o He will not address explosions o The strategy for explosions is prevention because t->0

Motion Only Through Spread

The Pre-Flashover Compartment Fire

Approach

 Zone Model – Divides the room into two well defined zones

• Upper Layer – Hot combustion products

○ Lower Layer – Cold air

 Implies strong simplifications but help understand the dynamics of the problem

The Evolution of the Smoke Layer

- Upper Layer The parameters that need to be evaluated are:
 - The temperature of the upper layer: T_u
 - The velocity at which the Upper Layer descends: $V_S = \frac{dH}{dt}$

Conservation Equations

 These parameters can be obtained from, the ideal gas law and conservation of mass and energy in the Upper Layer

$$\begin{split} P &= \rho R T_{u} \\ & \frac{\partial}{\partial t} (A \rho (T_{u}) H(t)) = \dot{m}_{s} \\ & \frac{\partial}{\partial t} (A \rho (T_{u}) H(t) C_{p} T_{u}) = \dot{m}_{s} C_{p} T_{s} \end{split}$$

Combustion

\odot Heat of Combustion (ΔH_C): Energy released per kg of fuel burnt – Complete Combustion

Fuel	ΔH_C [MJ/kg _{FUEL}]
Hydrogen	141.80
Propane	50.35
Gasoline	47.30
Paraffin	46.00
Kerosene	46.20
Coal (Lignite)	15.00
Wood	15.00
Peat (dry)	15.00
PVC (Poly-Vinyl-Chloride)	17.50
PE (Poly-Ethylene)	44.60

Conservation of Energy

 $\dot{Q} = \dot{m}_A \overline{C_p(T_S - T_A)}$

 $\circ C_p$ → Specific Heat (J/kgK) $\circ T_S$ → Smoke temperature $\circ T_A$ → Ambient temperature

$$T_S = T_A + \frac{\dot{Q}}{\dot{m}_A C_p}$$

Can be solved using an Excel Spreadsheet

$$\circ P = \rho R^* T \qquad or \qquad \rho_2 = \frac{T_1}{T_2} \rho_1$$

$$\circ \dot{Q} = \alpha t^2$$

$$\circ T_S = T_A + \frac{\dot{Q}}{\dot{m}_A C_p}$$

$$\circ \dot{m}_A = E \left(\frac{g \rho_A^2}{C_p T_A}\right)^{1/3} \dot{Q}^{1/3} H^{5/3}$$

$$\circ \frac{dm_{CV}}{dt} = \dot{m}_A \qquad m_{CV} = \rho_H A (H_0 - H) \Rightarrow \Delta H_t = \frac{m_{CV,t+1}}{A \rho_2}$$

$$\circ \frac{d(m_{CV} C_p T_H)}{dt} = \dot{m}_A C_p T_S \Rightarrow T_{H,t+1} = \frac{m_{CV,t} T_{H,t} + \dot{m}_A \Delta t T_S}{m_{CV,t+1}}$$

Implementation

al and a	0.0000	14/-2		110	3.75							
iow)	0.0029	VV/52		NO NO	2.73	m	$= \left(g \rho_A^2 \right)^{1/3} =$	0.072042200				
	0.2	m/c2		XO	4.75 m		$E\left(\overline{C_pT_A}\right)$	0.073042309				
	9.01	111/52 ka/m2		A	16 625		· · ·					
	1.2	1/ka/K		^	10.025							
	290	3/ KG/ K										
	5	с.										
	5			1		$\dot{m}_A = E\left(\frac{g\rho_A^2}{2}\right)$	$\left(\frac{2}{A}\right)^{1/3} \dot{\rho}^{1/3} H^{5/3}$ $T_S = T_A + \frac{\dot{Q}}{H}$	m - m + m At	$T = \frac{m_{CV,t}T_{H,t} + \dot{m}_A \Delta t T_S}{T_{H,t} + \dot{m}_A \Delta t T_S}$	T_1	$\Delta H = \frac{m_{CV,t+1}}{m_{CV,t+1}}$	
		t _{t+1}	$= t_t + \Delta t$	$Q = \alpha t^2$	$H_{t+1} = H_0 - \Delta H_t$	C_pT_A	, .	m _A c _p	$m_{CV,t+1} = m_{CV,t} + m_A \Delta t$	m _{CV,t+1} m _{CV,t+1}	$\rho_2 = \frac{1}{T_2} \rho_1$	$\Delta n_t = A \rho_2$
			0	0	2.75		0	290	0	290	1.2	0
			5	0.0725	2.75		0.164402464	290.440991	0.822012318	290.440991	1.19817798	0.041266282
			10	0.29	2.708733718		0.254478455	291.1395857	2.094404591	290.8654011	1.195302931	0.105395227
			15	0.6525	2.644604773		0.320407468	292.0364694	3.696441933	291.3729419	1.191631993	0.18658644
			20	1.16	2.56341356		0.368489362	293.1479878	5.538888744	291.9633902	1.187113726	0.280652336
			25	1.8125	2.469347664		0.40176389	294.5113562	7.547708193	292.6415303	1.181618273	0.38421671
			30	2.61	2.36578329		0.422421744	296.1786592	9.659816913	293.4149198	1.174966491	0.494517608
			35	3.5525	2.255482392		0.432332874	298.217048	11.82148128	294.2930322	1.166935299	0.609345303
			40	4.64	2.140654697		0.433169816	300.7117344	13.98733036	295.2869274	1.157254474	0.727016571
			45	5.8725	2.022983429		0.426418509	303.7716818	16.11942291	296.4091935	1.145597239	0.846361456
			50	7.25	1.903638544		0.413359555	307.5392099	18.18622068	297.6740793	1.131563029	0.966723004
			55	8.7725	1.783276996		0.395045362	312.2063106	20.16144749	299.0978091	1.114647553	1.087983949
			60	10.44	1.662016051		0.372277411	318.0436032	22.02283455	300.6991223	1.094189591	1.21065105
			65	12.2525	1.53934895		0.345576763	325.4552195	23.75071836	302.5001482	1.069271528	1.336063479
			70	14.21	1.413936521		0.315129487	335.0925749	25.3263658	304.5278443	1.038518983	1.466887413
			75	16.3125	1.283112587		0.280665661	348.1207547	26.7296941	306.8165037	0.999653124	1.60835905
			80	18.56	1.14164095		0.241166169	366.9593849	27.93552494	309.4125581	0.948333833	1.771878498
			85	20.9525	0.978121502		0.194077172	397.9596314	28.90591081	312.3851275	0.874460555	1.988313129
			90	23.49	0.761686871		0.132891219	466.7611149	29.5703669	315.8540079	0.745563392	2.385670629
			95	26.1725	0.364329371		0.04030385	939.3796419	29.77188615	320.0745138	0.370457251	4.833999439

Compartment Evolution

Summary

- Zone Model Divides the room into two well defined zones
 - Upper Layer Hot combustion products
 - Lower Layer Cold air
- Provides the evolution of the height and temperature of the hot layer
 - \circ It depends on an entrainment correlation
 - Results form a simple mass and energy balance between two control volumes
 - Breaks down when the smoke layer gets close to the floor, when the two control volumes become one and the entrainment correlation is no longer valid

Design Fire

o $A_B = \pi r_B^2$ o r_B → burning radius

o
$$r_B = V_S t$$

o $V_S \rightarrow$ Flame spread velocit
o $t \rightarrow$ time

$$O A_B = (\pi V_S^2) t^2$$

Timber Building Fire

Combustion

• Heat of Combustion (ΔH_C): Energy released per kg of fuel burnt – Complete Combustion

Fuel	$\Delta H_C [MJ/kg_{FUEL}]$
Hydrogen	141.80
Propane	50.35
Gasoline	47.30
Paraffin	46.00
Kerosene	46.20
Coal (Lignite)	15.00
Wood	15.00
Peat (dry)	15.00
PVC (Poly-Vinyl-Chloride)	17.50
PE (Poly-Ethylene)	44.60

Flame Spread Velocity (V_s)

$$\dot{Q} = \left[\pi \Delta H_C V_S^2 \dot{m}''_F\right] t^2$$

• What do we need to determine the flame spread velocity (V_s) ?

Burning Rate (\dot{m}''_F)

 $\dot{Q} = \left[\pi \Delta H_C V_S^2 \dot{m}''_F\right] t^2$

• What do we need to determine the Burning Rate (\dot{m}_F) ?

Flame Spread

Thermally Thick

o Most materials behave as thermally thick o $V_S = \frac{\dot{q}^{"}g\delta_S}{\rho_S C_{P,S}(T_{ig} - T_{\infty})\delta_T}$ $\delta_T = \frac{k_S(T_{ig} - T_{\infty})}{\dot{q}^{"}g}$ $V_S = \frac{\dot{q}^{"}g\delta_S}{k_S \rho_S C_{P,S}(T_{ig} - T_{\infty})^2}$ $\phi = \dot{q}^{"}g\delta_S$ Material Properties

Ignition

o Simplest

- o No-combustion
- o No heat feedback from the flame

o Complexity

o Implies models of the gas and solid phase

What are We Assessing?

- o Ignition defines the onset of the fire
- Ignition controls flame spread fire growth

Ignition – The Solid Phase

Fuel Generation

$$\dot{m}_F'' = \int_0^L \chi(x) Y_F(x) \sum \rho_S A_i e^{-E_i/RT} dx$$

The Boundary condition for the gas phase

- $\chi(x)$ is function that defines the fuel permeability
- Y_F(x) is the mass fraction of "fuel"
- L=thickness of the fuel

The Gas Phase

 With the appropriate boundary conditions energy, species and momentum equations can be solved

- o The combustion process is described by the appropriate reaction rate expressions
- o Ignition can be established by means of a critical concentration in the gas phase – Lean Flammability Limit-Flash Point
- o Flame establishes at a critical mass transfer number Minimum burning rate that sustains a flame -Fire Point

Complete Solutions

• Numerical solutions to this problem abound!

- None of them reproduces ignition adequately
 - Thermal properties vary with temperature
 - $\chi(\mathbf{x})$ is unknown
 - $Y_F(x)$ depends on surface oxidation thus is uncertain
 - Kinetic constants are unknown
 - Radiative properties are uncertain

o A simplified solution is necessary

Piloted Ignition

Simplified Problem o $k_S \frac{\partial^2 T}{\partial x^2} = \rho_S C_{P,S} \frac{\partial T}{\partial t}$ o $t = 0 \rightarrow T = T_{\infty}$ o $x = 0 \rightarrow -k_S \frac{\partial T}{\partial x} = \dot{q}''_e - h_T (T_S - T_{\infty})$ o $x \rightarrow \infty, T = T_{\infty}$ Material Properties $t_{ig} = \frac{\pi}{4} k_S \rho_S C_{P,S} \left(\frac{T_{ig} - T_{\infty}}{\dot{q}''_e} \right)^2$

Material Flammability Properties

$$V_{S} = \frac{\dot{q}_{g}^{*}\delta_{S}}{k_{S}\rho_{S}c_{P,S}(\tau_{ig}-\tau_{\infty})^{2}} \qquad t_{ig} = \frac{\pi}{4}k_{S}\rho_{S}c_{P,S}\left(\frac{\tau_{ig}-\tau_{\infty}}{\dot{q}_{e}}\right)^{2}$$

$$\phi = \dot{q}_{g}^{*}\delta_{S}$$

$$k_{S}\rho_{S}c_{P,S}$$

$$T_{ig} \qquad Material Properties$$

$$HRR = \dot{Q} = \Delta H_{c,o_{2}}\dot{m}_{A}(Y_{o_{2},\infty} - Y_{o_{2,out}}) = \Delta H_{C}\dot{m}_{F}$$

$$\dot{Q} \qquad Material Property$$

Ignition

o Liquids – evaporation dominated by thermodynamic equilibrium

o Solids – pyrolysis dominated by thermal degradation

 \circ In both cases simplified to T_{iq}

Classifications

- o <u>Flammable Liquids</u>: Any liquid having a flash point below 38°C and having a vapor pressure exceeding 2068.6 mm Hg (40 psia) at 38°C.
 - Class IA flash point below 23°C and Boiling Point (B.P). at or below 38°C
 - o Class IB flash point below 23°C and B.P. above 38°C
 - o Class IC flash point at or above 23°C, but below 38°C
- o <u>Combustible Liquids</u>: Any liquid having a flash point at or above 38°C
 - o Class II flash point at or above 38°C, but below 60°C
 - o Class IIIA flash point at or above 60°C, but below 100°C
 - o Class IIIB flash point at or above 100°C.

		NFPA Rating	Flash Point (°C)	Boiling Point (°C)
	Acetaldehyde	4	-37.8	21.1
Typical Data	Acetic Acid (glacial)	2	39	118
	Acetone	3	-18	5607
	Acetonitrile	3	6	82
	Carbon disulfide	3	-30.0	46.1
	Cyclohexane	3	-20.0	81.7
	Diethylamine	3	-23	57
	Diethyl ether	4	-45.0	35.0
	Dimethyl sulfoxide	1	95	189
	Ethyl alcohol	3	12.8	78.3
	Heptane	3	-3.9	98.3
	Hexane	3	-21.7	68.9
	Hydrogen	4	1 7.77 .1	-252
	Isopropyl alcohol	3	11.7	82.8
	Methyl alcohol	3	11.1	64.9
	Methyl ethyl ketone	3	-6.1	80
	Pentane	4	-40.0	36.1
	Styrene	3	32.2	146.1
	Tetrahydrofuran	3	-14	66
	Toluene	3	4.4	110
	p-Xylene	3	27.2	138.3

Thermal Inertia $t_{ig} = \frac{\pi}{4} k_S \rho_S C_{P,S} \left(\frac{T_{ig} - T_{\infty}}{\dot{q}''_e} \right)^2$ $\frac{1}{\sqrt{t_{ig}}} = \frac{2}{\sqrt{\pi}} \frac{1}{\sqrt{k_S} \rho_S C_{P,S}} \frac{1}{(T_{ig} - T_{\infty})} \dot{q}''_e$ y = Ax + B $y = \frac{1}{\sqrt{t_{ig}}}$ $x = \dot{q}''_e$ $A = \frac{2}{\sqrt{\pi}} \frac{1}{\sqrt{k_S} \rho_S C_{P,S}} \frac{1}{(T_{ig} - T_{\infty})} \quad \text{Slope}$ $B = 0 \qquad \qquad \text{Intercept}$

Material Properties

Data

Material	$\begin{bmatrix} {}^{o}C \end{bmatrix}$	$\frac{\overline{k_{s}\rho_{s}C_{s}}}{\left[\left(kW/m^{2}K\right)^{2}.s\right]}$
Wood fiber board	355	0.46
Wood hardboard	365	0.88
Plywood	390	0.54
PMMA	380	1.00
Flexible Foam Plastic	390	0.32
Rigid Foam Plastic	435	0.03
Acrylic Carpet	300	0.42
Wallpaper on Plasterboard	412	0.57
Asphalt Shingle	378	0.70
Glass Reinforced plastic	390	0.32

Flammability Diagram

Surface Temperature (T_s **)**

Data

Material	$(\Phi_{O,S})(\mathrm{kW}^{2}/\mathrm{m}^{3}\mathrm{s})$		
LIFT Wood	0.04		
FIST Wood	0.04		
LIFT black PMMA	0.01		
LIFT black PMMA	0.01		
FIST black PMMA	0.01		
Clear PMMA	0.01		
Delrin	0.02		
High Density Polyetylene	0.01		
Nylon	0.32		
Rigid Polyetylene	0.02		
PP/Glass Composite	0.01		
Clear PMMA #2	0.01		
Westinghouse Glass/Epoxy	No Spread		
Laminate			

Experimental Results

Kerosene

Naphthalene (I)

The Real Scale Application

o Large Scale Calorimeters

- o Factory Mutual
- o Underwriters Laboratories
- o BRE

Loveseat

Loveseat

Bunk bed

- Corner ignition of lower bunk
- Data from "Fire on the Web" (www.bfrl.nist.gov)

Mattress

HRR data resources

- o BFRL / NIST Fire on the Web o www.bfrl.nist.gov
- o Lund University Report on initial fires o www.brand.lth.se
- o Many other scattered reports
- o Some data included in fire model suites o CFAST; FPETool

Standard Fire

- Furnace to reproduce compartment
- Single element tested

Large Safety Factor?

- Poor understanding of material behaviour at high temperatures
- Poor understanding of fire dynamics
- Fire Resistance embedded into Codes & Standards which represent societies responsibility to guarantee safety – i.e. Large Safety Factors!

The Compartment Fire

- It was understood that solving the full energy equation was not possible
- The different characteristic time scales of structure and fire do not require such precision

 Looked for a simplified formulation: The Compartment Fire

Typical Compartment

Thomas & Heselden (1972)

- Realistic scale compartment fires (~4 m x 4 m x 4 m) aimed at delivering average temperatures
- Simple instrumentation: Single/Two thermocouples

Regime II

Thomas, P.H., and Heselden, A.J.M., "Fully developed fires in single compartments", CIB Report No 20. Fire Research Note 923, Fire Research Station, Borehamwood, England, UK, 1972.

Assumptions – Regime I

- The heat release rate is defined by the complete consumption of all oxygen entering the compartment and its subsequent transformation into energy, $\dot{Q} = \dot{m}Y_{O_2,\infty}\Delta H c_{O_2}$.
 - Eliminates the need to define the oxygen concentration in the outgoing combustion products
 - Eliminates the need to resolve the oxygen transport equation within the compartment.
 - Limits the analysis to scenarios where there is excess fuel availability
 - Chemistry is fast enough to consume all oxygen transported to the reaction zone
 - The control volume acts as a perfectly stirred reactor.
 - The heat of combustion is assumed to be an invariant/ the completeness of combustion is independent of the compartment.
- Radiative losses through the openings are assumed to be negligible therefore \dot{Q}_{out} is treated as an advection term (3% of the total energy released (Harmathy)).
- There are no gas or solid phase temperature spatial distributions within the compartment.
- Mass transfer through the openings is governed by static pressure differences $(\dot{m} = CA_O\sqrt{H_O})$
 - o all velocities within the compartment to be negligible
 - Different values of the constant were derived by Harmathy and calculated by Thomas for different experimental conditions.

Design Method

(Law, M., "A Basis for The Design of Fire Protection of Building Structures," Struct. Eng., no. February, pp. 25–33, 1983.)

 \circ Average temperature – single thermocouple rack (6 – TC)

Regime II?

- \circ Data scatter is very large
- Factors such as aspect ratio, nature of the fuel and scale were shown by Thomas & Heselden to have a significant effect on the resulting temperatures
- The relationships between $T_{g,max}$ and R with $A/A_0\sqrt{H_0}$ and $A_0\sqrt{H_0}$ are no longer valid

Summary

An elegant framework was established

that provided an *"answer"* to a *"fundamental question"*

o Assumptions were clearly established

o Limitations were clearly established

 A simple design methodology was developed that provided a "worst case: T_{g,max} vs t" curve for the purposes of structural analysis.

Complex problems require detailed solutions

- Only CFD provides temporal and spatial resolution required
- Precision, robustness and uncertainty need to be consistent with the requirements of the problem
- Validation & Verification need to be consistent with the complexity of the model

Complexity

Incompatibility of Scales

Туре	Time Scale (s)	Vertical Scale (m)	Horizontal scale (m)
Combustion	0.0001 – 0.01	0.0001 - 0.01	0.0001 - 0.01
Fuel particles	-	0.001 - 0.01	0.001 - 0.01
Fuel complex	-	1 – 20	1 - 100
Flames	0.1 – 30	0.1 - 10	0.1 – 2
Radiation	0.1 – 30	0.1 - 10	0.1 – 50
Conduction	0.01 - 10	0.01 - 100	0.01 - 0.1
Convection	1 – 100	0.1 - 100	0.1 - 10
Turbulence	0.1 - 1,000	1 – 1,000	1 – 1,000
Spotting	1 - 100	1 – 3,000	1 – 10,000
Plume	1 - 10,000	1 – 10,000	1 - 100

Sullivan, A., "A Review of Wildland Fire Spread Modelling, 1990-Present, 1: Physical and Quasi-Physical Models", arXiv:0706.3074v1[physics.geo-ph] (2007).

What is next?

- Comprehensive Fire Models will not be a viable solution for a very long time
- Fundamental understanding of the different processes involved and their couplings can enable formulations consistent with the modelling domain
- The simplified formulations need to be specifically designed for the purpose of CFD based scaling-up of the fire