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Motivation for quantitative species 

concentration measurement

• Quantitative concentration measurements are motivated by various 

scientific and technological issues

• Target species depends on the combustion process 

• Mixture fraction 

• Reaction progress and intermediate species concentration

• Pollutants

• …

• A quantitative species measurement in combustion application requires 

information of local gas temperature (density correction and method-

related correction such as quenching correction in LIF)

• Best option: measure simultaneously local temperature
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Methods in the NIR/UV/VIS for temperature 

measurements via Boltzmann distribution

• Laser absorption spectroscopy (LAS)

• Laser-induced fluorescence (LIF)

• Raman spectroscopy (RS)
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Laser absorption spectroscopy (1)

• Experimental setup

• Deduce number densities from Beer-Lambert’s law 

(shown in its simplest form)
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Detector

Path length L

Calibration free (once the path length and absorption cross-section is known)

Line-of-sight: no resolution along laser beam path 

 restrictions for application in turbulent flames
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Laser Induced fluorescence: Principle
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Step 1: Absorption

 Electronic excitation of molecules by laser 

radiation

 Wavelength 𝜆A

Step 2: Spontaneous emission (fluorescence)

 Spectrally red-shifted  𝜆A < 𝜆E

 Upper state lifetime few ns

 Measure of local number density

 Linear LIF regime

𝜆A < 𝜆E

𝜆A

𝜆E
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Laser Induced fluorescence: Experimental 

setup

• Experimental setup
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Laser Induced fluorescence: pros and cons

• Good spatial resolution (90° detection angle)

• Sensitive

• Calibration required to determine

• Total lifetime ttot needed but often not known!

Total lifetime ttot makes quantitative LIF challenging!
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How to make LIF quantitative – options 

1. Quantification of ttot : Measure ttot = fct(T, species), 

once ttot(T, species) is known measure LIF simultaneously with T and 

species (via Raman/Rayleigh)

2. Calibration: determine C = C(T) in

→Example CO-LIF in application example flame-wall interaction

3. Saturated LIF: does not really work, not detailed here

4. Combine 1D-LIF with absorption spectroscopy (see CST 158, 2000, 

Pixner et al.)
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How to make LIF quantitative – options 

5. Predissociative LIF: Independent of Q; low SNR, works for few 

molecules at low pressure 
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Example OH-Radikal

Excitation at 248 nm by KrF-Excimer Laser

(A-X) (3-0)-band

Inter nuclear distance
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Raman spectroscopy
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elastic

• Elastic and inelastic light scattering of photons off molecules
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Combined Raman/Rayleigh spectroscopy

• Multi-scalar method: instantaneous measurement of main species 
(Raman) and temperature (Rayleigh)
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Combined Raman/Rayleigh spectroscopy

• Multi-scalar method: instantaneous measurement of main species 
(Raman) and temperature (Rayleigh)
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Combined Raman/Rayleigh spectroscopy

• Multi-scalar method: instantaneous measurement of main species 
(Raman) and temperature (Rayleigh)

• Spectral dispersion and simultaneous meas. of: CO2, O2, CO, N2, CH4, 
H2O, H2, equivalence ratio (phi), Temp.

• Challenges: 

– Low Raman scattering cross-sections and single-shot requirement

– Data evaluation of noisy data

– 1D application, high spatial resolution
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Raman spectroscopy: selection rules and 

spectra
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Oxygen molecule O2, T = 1500 K

Simulated “stick spectrum” – infinite resolution

Ro-vibronic Stokes Raman

Exception: very weak R and P-lines

• Selection rules

0, 2

0 Q-branch

2 O-branch

2 -branch
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Raman spectroscopy: setup
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• Experimental setup

Shuttered CCD

filter

objective
lens

laser

Spectrometer

Low dispersion spectrum

Fixed frequency



1D Raman/Rayleigh: spectrometer
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• New TU Darmstadt design



1D Raman/Rayleigh: spectrometer
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1D Raman/Rayleigh spectroscopy: 

iterative post-processing procedure

• Raman (inelastic) scattering  concentrations Ni(r)

• Rayleigh (elastic) scattering  temperature T(r)

 Determination of Ni, T by iterative procedure: 

Need ram,i of each species i
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Different options for data evaluation

• Spectral fit

• Matrix inversion (MI) method

S M N

1
N M S


 

Combining the strength of both

→The Hybrid MI-method
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Motivation

• Spontaneous Raman scattering
– important technique in combustion research

– major species, scalar gradients, scalar dissipation

– need best possible accuracy, precision, and spatial resolution

– improvements in detection hardware and methods of analysis 

• Two approaches to data analysis for hydrocarbon flames;
both are complicated

• “Hybrid” method of Raman data analysis
– combine strengths of methods used by Sandia and TU Darmstadt

– reduce level of expertise needed to interpret Raman data

• Demonstrate using laminar flame measurements from Sandia system
– Premixed CH4/air flat flames

– Laminar H2 jet flame (no hc fluorescence interference)
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Matrix Inversion (Sandia)

• Extensive calibrations to determine temperature dependence of matrix elements for 

Raman response and crosstalk (represented as polynomials)

• Solve inverse problem to get species concentrations and temperature

• Iterate on Rayleigh temperature (1K conversion, 3-4 iterations)

• On-chip binning of Raman bands to reduce camera readout noise

• Matrix equation relating signals and sources
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Spectral Fitting (TU Darmstadt )

• Individual rovibrational Raman transitions calculated for each species, 
based on Placzek´s theory of polarizability (TUD Ramses code)

• Each Raman transition convolved with experimentally determined apparatus 
function, then all convolved Raman transitions superposed

– Rayleigh scattering image  apparatus function in this work

– Raman bands broaden with increasing temperature due to the 
population of higher quantum states

– Spectral library composed of temperature-dependent Raman bands

• The spectral library for each molecule is calibrated to an experimental 
spectrum measured in a gas sample with known mole fraction and 
temperature.

• Details of fitting procedure (Dirk Geyer thesis)
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Pro’s and Con’s

• Pro’s

– Lower noise

– Faster acquisition & processing

• Con’s

– Extensive calibrations required

– Cannot calibrate accurately at 

some conditions

– Spectral information lost

– Impractical to account for beam 

steering or spatial dependence of 

response function

Matrix Inversion (old version)

• Pro’s

– Based on quantum mechanical theory

– One calibration per species

– Beam steering handle automatically

– Background corrected more rigorous

• Con’s

– Higher readout noise

– Slower data acquisition rate

– Significant time/effort in fitting

Spectral Fitting
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Turbulent Combustion Laboratory:

Raman/Rayleigh/CO-LIF & Crossed OH PLIF

 T, N2, O2, CH4, CO2, H2O, H2, CO 

 6-mm segment

 Mixture fraction, reaction progress

 3D flame orientation 

 1D, 3D scalar gradients, dissipation
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f1 

150 mm, double-achromat lens 
pair (f/2, f/4) 

slow 
wheel 

fast 
wheel 

f3 f2 

f4 

transmission 
grating 

• LSF 40-60 mm

• Transmission grating

Detection System

• Mechanical gate: 3.9 ms gate (FWHM)

• 103 mm data spacing
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Optical Bowing Effect

• Image of N2 Raman scattering in air

• Low f-number spectrograph

– bowed image of slit

– Jun Zhao, Appl. Spectr. 57, 11 (2003) 

1368-1375

• Calculated (Zemax) and measured

– Map CCD for wavelength at each pixel

• Must account for this optical effect

Wavelength 
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Spectrometer Characteristics

• Spectral/spatial calibration using 
neon lamp and target with 
50-mm holes on 200-mm centers 

• Calculated (Zemax) dispersion is 
not linear across the image plane
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Spectral Library vs. Measurement
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Calculated Spectral Libraries (Ramses code)

CO2

O2

N2

H2O

H2

CO
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Major Species Response Curves

• Good agreement, except for O2 curve shape at high T

• O2 response sensitive to bowing effect and beam steering

~1% 

~3% 
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Crosstalk between CO2 and O2

• Greater uncertainty in calibration polynomials

• Sensitive to bowing effect and beam steering

CO2 O2

O2 << CO2 CO2 << O2
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Effects of Image Bowing on O2 Errors

• O2 mole fraction should be zero in the rich flame products (f=1.3)

• Bowing effect leads to error of XO2 ~ 1.6% due to uncorrected CO2 crosstalk

premixed CH4/air

“flat” calibration flame  

crosstalk from CO2

without bowing correction

after bowing correction
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Comparison for Laminar H2 Jet Flame

• Close agreement on mean values from hybrid-MI and spectral fitting

• Hybrid method yields better precision (on chip binning)

• Spectral fitting yields lower noise than MI with software binning
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Conclusions

• Hybrid method of Raman data analysis has been developed

– Calculated Raman libraries are integrated to determine 
temperature-dependent terms for matrix inversion

– Response and cross talk for N2, O2, H2, CO, CO2, H2O

• Combines advantages from both previous methods

– Low noise from on-chip binning

– Fast data acquisition and processing

– Temperature dependence based on QM theory

– Automatic correction for image bowing and beam steering

• Relatively easy to adapt to other Raman/Rayleigh systems 
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• Thermo-chemical state in swirling premixed flame: 

Gregor et int. Dreizler. Proc. Combust. Inst. 32, 1739 – 1746 (2009)



• Burner

• Operational conditions

Thermo-chemical state in swirling premixed 

flame

30

60

70

100

air +  methane air +  methane
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  Z= 0mm

moveable-block

 (a)

PSF-30 PSF-90 PSF-150

S0,th [-] 0.75 0.75 0.75

P [kW] 30 90 150

f [-] 0.833 0.833 1.0

Retot. [-] 10000 29900 42300



Measurement locations 

 Radial profiles at 4 axial heights

z = 10 mm

z = 20 mm
z = 30 mm

z = 60 mm

r

z



Raman scattering – exp. setup

 focusing lens f = 1100 

mm

 achromatic lens system (f/# = 2) collecting 
Raman & Rayleigh scattered photons

 achromatic lens system (f/# = 4) focusing onto 
imaging side

 Rayleigh: electron-

multiplied thermo-electrically 

cooled CCD

… from delay line 

…

 1D probe volume

beam waist ~ 400 
µm

 energy referencing



Raman scattering – exp. setup

 steep cutoff long pass filter 

reflecting Rayleigh scattered light 

/ transmitting Raman scattered 

light

 Raman: gating by a rotating 

shutter (~ 10 µs) 

suppressing spurious light

 Czerny-Turner type imaging 

spectrometer

 thermo-electrically cooled 

backside illuminated CCD

… from delay line 

…

 1D probe volume

beam waist ~ 400 
µm

 energy referencing



Raman scattering – exp. setup

 focusing lens f = 1100 

mm

 energy referencing

Data evaluation is conducted with a spectral 

fitting method using theoretical Raman 

spectra
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Raman scattering – spatial resolution

Raman 

probe 

volume

Rayleigh 

probe 

volume

• using highly resolved (77.5 µm) 

Rayleigh signal to determine radial 

instantaneous temperature profiles

• using coarsely resolved Raman 

signal (310 µm) to measure species 

concentrations & correct for scatter 

cross section



Raman scattering – spatial resolution
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Radial Profiles (mean and rms)
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Radial Profiles (mean and rms)

 inner recirculation zone (~0-10mm):

 fully burnt exhaust

 heat loss to bluff body

 inner mixing layer (~10-20mm):

 strong intermittency hence high fluctuation levels

 r ~ 17 mm: mean premixed flame front position as 

deduced from max. T & c gradients / max. CO 

concentration
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Radial Profiles (mean and rms)

 inner recirculation zone (~0-10mm):

 fully burnt exhaust

 heat loss to bluff body

 inner mixing layer (~10-20mm):

 strong intermittency hence high fluctuation levels

 r ~ 17 mm: mean premixed flame front position as 

deduced from max. T & c gradients / max. CO 

concentration

 central annular jet (~20-27mm):

 almost unreacted fuel without dilution

 outer mixing layer (~27-38mm):

 steep phi gradient towards surrounding air (phi = 0)

 second temperature maximum due to outer 

recirculation zone
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Mean Radial Profiles - z Dependency

 for increasing height z:

 mean flame front position at larger radii

 wider flame brush & broader mixing layer 

hence flatter radial T & phi profiles

 distinct 2nd T maximum (up to z = 30mm) 

due to outer recirculation of exhaust

 premixed flame front is located in regions 

with very low stratification of nearly constant 

phi (up to z = 30mm)
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Single Shot Correlations - Scatter Plots
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 single shot correlation between 2 

or more scalars (e.g. T & CH4)

 each scatter corresponds to one 

single shot

 samples spanned between 3 

thermo-kinetic states:

 a) hot burnt exhaust

 b) cold unburnt fuel

 c) cold secondary air
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Single Shot Correlations - Scatter Plots
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• samples can be assigned to flame 

regions:

– inner recirculation zone (0-10mm):

fully burnt samples @ max T, no 

secondary air

– inner mixing layer & central annular

jet (10-27mm):

burnt, unburnt or mixed samples, 

no secondary air

– outer mixing layer (27 - 38 mm):

mostly unburnt fuel and / or 

secondary air

rarely mixing between burnt 

samples and secondary air

– coflow / flange (>38 mm):

exclusively ambient air



Scatter Plots - z Dependency

 at z = 30 mm:

 significantly increased 

probability to measure 

intermediate samples due to:

 a) secondary air entrainment 

into burnt exhaust (OML, CF)

 b) mixing between burnt / 

unburnt fuel (CAJ) and 

reaction without dilution

 c) mixing of air with reacted 

AND unreacted fuel

or

 slowed or extinguished 

reactions (CAJ, OML, CF)
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Conclusions Raman/Rayleigh scattering in 

swirling premixed flame

 Temperature is key-quantity (reaction progress)

 Thermo-kinetic state precisely measured

 Thermo-kinetic state is a prerequisite for understanding pollutant 

formation and finite rate chemistry effects

 Main findings are

 In region of flame stabilization (z < 30 mm) premixed flame front is not located in 

areas of stratification but in areas of almost constant phi

 typical reaction and / or mixing behavior can be assigned to different flame 

regions 

 intermediate reaction states are promoted by dilution with air

 distinction between pure mixing and local flame quenching needs additional 

diagnostics monitoring intermediate species


