Tsinghua-Princeton-CI Summer School

July 14-20, 2019

Structure and Dynamics

of

Combustion Waves in Premixed Gases

Paul Clavin

Aix-Marseille Université

ECM & CNRS (IRPE

2)

Lecture XIV

Nonlinear dynamics of shock waves.
Triple point and Mach stem formation.

Copyright 2019 by Paul Clavin
This material is not to be sold, reproduced or distributed
without permission of the owner, Paul Clavin



P.Clavin XIV

Lecture 14: Nonlinear dynamics of shock waves
Mach stem formation

14-1. Experimental and DNS results

What is a Mach stem ¢

Mach stems and cellular detonations
Spontaneous formation of Mach stems

14-2. Multidimensional dynamics of shock fronts
Linear dynamics
Weakly nonlinear analysis

14-3. Shock-vortex interaction

Formulation
Analysis of the crossover

14-4. Shock-turbulence interaction
Composite solution
Model equation

Comparison with DNS



P.Clavin XIV

XIV-1) Introduction.

Recent experimental and DNS results

What is a Mach stem 7

Triple point = 3 shock waves + 1 slip line (degenerescence of shear layer)

called also contact line discontinuity ( Courant Friedrichs 1948)

First observed during the reflection of an oblique shock front incident an a wall
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e Mach stems and cellular detonations

Ezxperimental observations of the cellular structure of detonations

Transverse structures of gaseous detonations have been observed for a long time
Shchelkin Troshin (1965)

A
g
2
} Jbet et al (2008) ) Presles et al. (1987)
markings left on soot-coated foils on the walls visualisation of the cellular structures by optical methods

trajectory of triple points

Underlying linear mechanisms y
longitudinal oscillation of the complex shock reaction zone r = a(t,y)
(Galloping detonation) see lecture X1 e .
. —I— g Shocked gas
transverse oscillatory modes (normal modes of the lead shock) E
see lecture XIII Longitudinal oscillation
—p

Nonlinear mechanisms

singularity of slope of the lead shock = formation of Mach stems Mach stems propagating
| n in the transverse direction

Shock

A wave

Heat
release

trajectory of Mach stems = makings

shock front

Leading




FCvin XV Spontaneous formation of Mach stems on shock fronts

Schlieren experiments in shock tubes

Freeman 1957 Lapworth 1959

Shock reflexion from a wavy wall 16 cm

‘ Triple points
Briscoe Kovitz 1968 A
Jourdan Houas 2011

Denet et al. 2015

8 cm

v

time between 2 consecutive frames: 8 s
quite similar to the markings left by the transverse structure of cellular detonations

__ai

Shehelkin Troshin 1965

DNS in 2 dimension geometry | ’ .
Comparison with experiments

16 cm

Lodato Vervisch 2015

t=120 ps

Denet et al 2015

t=200 ps

t=280 ps
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Spontaneous formation of Mach stems

The incoming shock wave is not strong, M, = 1.5 and the amplitude of wavy wall is small 1 mm

Immediately after reflection the wrinkled reflected shock has a smooth sinusoidal form

Singularity of slope is formed spontaneously at about 15 us leading to triple points clearly observed as early as 20 us

6 s 10 ps 14 us 22 us 26 us
Lodato Vervisch 2015

Long-lived Mach stems on quasi-planar inert shock front
Crossing

| / /S Al o / & J -
) \ \ < \ \ £>< \>< \
/ / /\ /><| / | /

, | ¢ e
0 s 10 ps 20 us 30 us 40 ps 50 us

66 (1S 70 ps 80 us

Sufficiently far from the wall the wall effect becomes negligible Lodato Vervisch 2015

The shock is quasi-planar with Mach stems propagating in the transverse direction crossing each other
without deformation as solitons are known to do 6



S XIV-2) Multidimensional dynamics of shock fronts

Analysis for strong shocks in the Newtonian limait

Linear dynamics
Distinguished limait

In order to simplify the presentation the analysis is performed for strong shock in the Newtonian limit

—2
M U >> ]-7 (7 _ ]-) << ]-7 in the frame 5)\2 the Lgp/)erturbed planar shock
_2 _2 _2 initial fluid o shoied fluid, Neumann state
M,(y-1)=0Q1), My=(@H-1/2+1/M, <1, D>, | T <my
e=Mi<1l M,=0(fe), (y-1)=0() | G
un/Dr e, @ ~unD,  an/a, = O0(1) ’
Rankine-Hugoniot relations (seep. 6 & p.9 lecture XIT) .
5pNN_2% (5pN:_2(du) vy
PN D’ , PN an) D’
—1)M, —2 —

oM

where for simplicity some unimportant > terms have been omitted in dpx and dwy

Quasi-isobaric approrimation of the flow in the shocked gas

+2SM N4/ 1 + 52 = §2 (1 +M;2)+1 S

Dispersion relation see p. 10 lecture XIII

_? L = | o~ tianl|k|
RV

Y

w ~ ayk, O /ot* —an0*a/0y* =0 (| =g

Shocked gas

Wave equation

7
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€=My <1 M, =0(1/e), (y —1) = O(e?)
Y
[ ﬂ]\7/5 ~ 627 a?\] ~ ﬂNﬁ? a]\T/GJUJ — 0(1) Normal mode
x = a(t,y) U
Fresh mixture A 0 o
- T w %aN]C, 8205/8t2 —dNazoz/@gf =0 G‘
Shocked gas % ’\\ ,—"’_’;//‘%:g\:(a) TLN““.
Wave equation @ O
o NS
w~an|k G = O(ayay) 5 5&‘—({»——;‘” R
| ¥ UN
- : : . . \
op = py exp (il+x + iky + ot) ily = il Y \\ \X,\\,x———"*’gj@
(see pp.4-5 lecture XIII) z A

(kD1 — My = MyQ+/02 —1>0
=

My=¢ ~w/(an|k]) =1

[k = O(e)

Vorticity wave
(shear flow)

the acoustic waves propagates in a direction quasi-parallel to the front

fb(a) _ ity PN eilix (a) _
o+iliuny pyun ’ ou — O(EépN/pNaN>
. _ see p. 4 lecture XIII
~(a) __ lkUN PN ilyx
w\'Y = — e

o+ iltuyn PNUN

Rankine-Hugoniot:
(see p. 6 & p.10 lecture XIII)

_  apn an

— L= =2 =
PNy ~ PNAN ~ PNUN =

dw'™ = O(6pn /pyaw)

OpN /Dy & —2(3475/5 —

sul® = O(26pn /PnTN)

bw'™ = O(edpy /Pniy)

opn/(Pnun) = O(dy)

EN/GJU — —

My~ MMy

D = O(D)
8

sul® = O(%éy)

=
5?1](@) — O(EOAt)

A

weak acoustic wave
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y Normal mode
! €=Mz <1 M, = 0O(1/e), (v —1) = O(€?) A :
z = a(t,y) — —
Fresh mixture EN/D ~ 627 aN ~ ﬂND, a/N/a”U, — (1) g \\ )
> T k ,)g ::;;__’)
Shocked gas UN
W =~ aNka aZOé/atz - 6%8205/83/2 — O u\ﬂ - Non-radiative
D e - acoustic wave
. R
Wave equation VA
Y \ X\ A
- :\/’— ou
Rankine-Hugoniot: , (v — 1)M2 —2] . j_fbl x Rz
(duny — &) = — — Cuy, Lou)
( see p. 6 & p.10 lecture XIII) 2M Vorticity wave
u (shear flow)
— 5UN SHeT (SUJN ~ 5&; = O(Ozt/E) |5u(a)/5u(z)| _ 0(62)
| = o
Sul | o = duy ~ &y 0w ® /6w | = O(€?)

Sw'|,—g = dwy ~ ﬁa’y

the acoustic waves are negligibly smaller than the vorticity wave

A y
10u'? /6w | = O(e) ‘
anot \\
the vorticity wave is a shear flow quasi-parallel to the front ) \ _
propagating at a subsonic velocity in the normal direction \ L= % <l
O iy 2V u =0 = sy =g T sw') =Da! (y,t — /T .
a‘FUN% u’ =0 ou —th<y,t—il?/UN> w — Oéy(y, :C/UN) ‘\ \ .
au® o) 1 0%a —0% B T A 72 , - ' s
L 5 —) = _ﬂﬁ +D8—y2 =0 uUN an —>  Wave equation @:i(st

A subsonic wave that is sufficiently tilted yields a trace on the front that is sonic

9
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Weakly nonlinear analysis

Nonlinear Euler equations

u' = éy(y,t —z/Tn)

w! = Daj(y,t —/un)
Dy ~ a%

=2 N
O = CLNCsz

The weakly nonlinear approximation is valid when the nonlinear terms U and ) are small

This is the case for small amplitudes of the wrinkles

Ju _ Ou 1 Op
at “N%/_” T pox
ou ou

U = O(cdu'? /dt)

—

where € = |é¢|/un = O(Jay|an/uy) that is | e = O(|eg|/€)

Perturbation analysis for ¢ < 1

. . — /
progressive wave: ¢y = :I:CLNOéy

10H
2 O’

[_d%(yvt o x/ﬂN) + a?\[&f(y,t o x/ﬂN)]

Q

U
where H

o, | < €

Y

Clavin (2013)
ow _ Ow 1 0p
E -+ UNa—yj V4% ;a—y,
—W=ddu— +w—, where u=u—uy ~ u"
ox oy (i)
: (TSR
W = 00w /6t)

(compared with the linear terms)

where € = My = uy/ayn namely for e < 1

1 D OH

QHNﬁ—y’

=~ H=0, U=0, V=0

no first order correction term coming from the Reynolds tensor
the shear wave u'” =du(y,t —z/un) w? =Dal(y,t —x/un) is an exact solution of the Euler equations for p = 0

the first order correction terms should come from the boundary conditions at £ = a(y,t) (Rankine-Hugoniot)

|10
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Limiting the attention to the nonlinear corrections of order

mass py(uny — 0o /Ot —wnda/Jy) = pu(D — dar/Ot)

e =|ay|/€

the Rankine-Hugoniot conditions yield

p.5 lecture IV

tangential — (D _7
monglentum OwN <D uN)aa/ dy

longitudinal ~ pn 2yMg — (v — 1)

r=a(y,t):

pN/Dy = 1— 2(5%/5, UN — UN RN Oy —I-ﬁozf, wy ~ Da

p:

PN, U=UN, W =WN

momentum Du - ( 7t 1)
where M, = (D — cu) e p.7 lecture X
ay (1+a2)

The shift of the front position also introduces quadratic terms

the onlyn\onﬁnear term that yields a correction of order ¢ = | |/e

&e| = O(anay), Dfan =0(1/e)  => Dla, /| = O(lay|/e)

r=0: du=us(yt)=oduy —au,, w=wslyt)~wy—aw,

The nonlinear equations for the wrinkles is obtained from the incompressible condition

—UN Ouy /Ot + Owy /Oy =0

H =0 = the nonlinear terms coming from shift of the front position do not contribute

—unO(aul,) /0t + 0(aw,) /Oy =0

1 Ouy Owy 0%« 2a  —0 (o)’
_ 1 -0 =| 22 _p272% ., 57 (Z2) _
uy Ot | Oy o Vo2 tP% (ay) ’
/

/

nonlinear correction of order ¢, ﬁa;f /e = (D/an)|a,| =~ e
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: nonlinear correction of order ¢, Da, /|| ~ (D/ay)|a,,| ~ ¢
Mach stem formation ! y /16e] & (D/an)]ay|

A

2a ., 2a —0 [da)\’
D—(— ] =0
2 NoE T h (ay>
Normal mode
Two timescales problem: _ wavelength of the wrinkles

short time 7s = L/an (period of oscillation)

long time 7, = 75/¢ (for the formation of a singularity of slope)

\ ) Non-radiative
. . D ;1 3 - = acoustic wave
Non-dimensional form t=t/7s, y=y/L, A= a/(cel) \\1\ ™
[ o
Lolte
6\1\' UN Mach stem

o (triple point)
Vorticity wave
(shear flow)

*A  0*A 0 (&4) _0

o2 oy2 oot oy

small nonlinear correction term producing a singularity at finite (but long) non-dimensional time 1/¢, t = O(1/¢)
that is at the long timescale t = O(1;)

so that A may be considered to depend on two reduced time variables t and t’ = et, %2% %2 5% vo Ly
Considering a simple progressive wave y/ =y -t o "o T ¥ aar T a2
and looking for a solution in the form A(y,t) = A(y’,t’) one gets 25(%253, +52§é —I—e% (%)2 + &2 t2, —‘%)2 =0
Burgers equation for B(y',t') = 0A/0y’ |0B/ot' + BOB/dy' =0 leading order gﬁ M

known to produce a singularity after a finite time see pp 3-4 lecture X
Geometrical construction for the slip line and the secondary shock
Collapse of points C and D by a Huygens like construction b0 ~Dal? ,>< /(14 a2 =D
different only by a numerical factor 1/2 Gy =~ 504;2 /2

12
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Numerical solution of the model equation and comparison with experiments

2a  _, 2a —0 [da)\’
% o t0s (ay) =

Initial condition: sinusoidal shock front of small amplitude

The formation of corners is clearly observed

Good agreement with experiments and DNS

Lodato Vervisch (2015)

The trajectory of the corners looks quite similar
to the traces left on the wall by a cellular detonation

Denet (2014)
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XIV-3) Shock-vortex interaction

Formulation
strong shock + weak vortex

€=My <1 M, =0(1/e), (v —1) = O(€?)

Consider a cylindrical and very subsonic vortex of diameter L and turnover velocity ve, [ve /@y, < € |(ve < @y /M)

Clavin (2013)

Interaction time 7;,; = L/D < turnover time L/v, = frozen flow u,(r) w.(r) + small disturbances of the front
The disturbances of the front during the crossover can be described by a linear analysis
Interaction time 7;,; = L /5 < propagation time in the transverse direction of the wrinklesL /ay

After the interaction time, t > 7;,:, the wrinkled shock front propagates in a quiescent medium

2 timescales: short crossover and longer transverse propagation of the wrinkles Y A~//V/v'e;k_al_céiufs,ﬁc\\\\
pulse N
the crossover provides the initial conditions aNT R
Linear analysis of the crossover @~ \

N N,
anytun

Similar analysis but with an upstream flow {4 Tiansmited ’
. ' trong 1
5“’1 (I‘, t)? 5?1]1 (I‘, t)) 5291 (I', t) ngl:ftlg)l( vi L / acoustic —»"

\ /\u burst 1 >
Rankine-Hugoniot (generalization of the relations p. 6) Ly H

(the subscript f denotes the value at the shock front of the upstream flow) unt / \ ant !
. _ 2 ) squeezed vortex
0PN B 5p1f ~ 9 (5u1f — Oét) 5pN B 5p1f _ 9 (a_u> (5U1f — Olt) by compression
PN Pu D " DN Dy ay D ’ iy <D
—2
: —1)M, —2 . __
(5UN - Oét) — [(fy Q)MQU ] (5u1f — Oét) , 5’(UN ~ DOé;J -+ 5w1f,

oui£(y,t) = Ue|,— 3y 5w1f(y,t)=w$\x:_5t, op17(Y,t) = Pelre 1y
D vortex

| 4



P.Clavin XIV
Acoustic burst

Acoustic in the shocked gases (Doppler neglected for simplicity) 0 <t < Tint

WO Loy Aoy P (T 0
ot D 01 ot Dn Oy otz N\ 9a2 T 9y?
r=0, 0<t<Tip: d/0t =0(D/L), 0/0y =0O(1/L) T
A quasi-planar and longitWessure burst/l/r{ansverse extension L is generated 54“ "

Op/ 9 ~ (1/an)dp/0t ~ (D/an)ip/L ~ ¢ (Op/dy) = 5w |/|u®] = O(c)
Rankine-Hugoniot  épi1¢/p,, is negligible 6]; 1:; %—?“ ~ (v;/ 7%)2 ~ (Ueé %) <1 B @v{‘; ‘/T' oo™ a%:?ﬁgﬁc_:‘: >
(@ o Ve [Ty, K € OpN /Py ~ 2(6ur s — 6y)/D U i !

u'" =~ ép/(pyan) (a) _ aNt/ ant T
Ve Ty < €, 0 <t < Tint: 0uD| g = duy’ ~ A(@n/D)(6urf|— v ’

Vorticity wave (transmitted vortezx)
dun = ¢y suld |y = 5u§\z}) = dun — 5u§f;) ~ &y — 2[an/D)dusy
dwn ~ Do, + dwiy 5w(i)’x:0 — 5w](\’5[) — Swy — 5w](\<;) ~ 5&; + Swy s — 5w§\¢;)
Vorticity wave  §y() = 5u§\if)(y,t_x/ﬂN)7 Sw® = 5w](\if)(y’t_x/ﬂN) dou? _ 1 96u'd) _0 E ou) _lo du?)
| ' . . ox uy Ot uy L e2L
0du") /6 + 06w ™ [y = 0 0uD|/|6w®| = O(e?) The vorticity wave is quasi-parallel to the front

Incompressibility

= O(eve) =

(@n/D)ous s

= O(v./L)
longitudinal component
of the vortex velocity

~ ve/(eL) > ‘85w1f/8y

(EN/ﬁ)I(%ulf/ax

To leading order

Ve /Oy K €, 0 <t <Tipr: Oy~

Ue

z,y)
D

_ 0
oGy /D)duis, aly,t) =22 [ da
D J_py

Wrinkles of very small amplitude are left on the shock front by the vortex

la| = O(GZL’UG/EU),

o, | = O(%ve /)
|5
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XIV-4) Shock-turbulence interaction
Strong shock propagating in a weakly turbulent flow

Composite solution for a single vortex

During crossover
_ 0
Ve Ty < €, 0 <t < Tine : G ~ 2@ /D)oury, aly,t) =22 ARG
D —Dt D

0« an Oou
beginning of interaction <t < end of interaction: —— &~ 2 N L

o> "D ot
valid during a short lapse of time of order L/D

After crossover

2o _, 2a —0 [da)\’
a D—|(— ] =
oz NgE T at<ay) 0

involves a time scale of evolution L/ay longer than L/D
€ = EN/ﬁ <1

Composite equation

frozen velocity field U, (33, y)

0%a 28% 0 (0a\® _an Oduy;

taking advantage of the two different time scales

|6

— outr(y,t) =
D Ot 1,"(_( )

short living forcing term

Ue| .5

Dt
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Model equation

Extension to 8 dimensions

LD o _, —0|Val? ay Oduq g
L — —awA D = 22—
: (a%) giz NSt D ot

where (5u1f(y, < t) — Ue(ﬂﬁ, Y, Zat)|a;:—5t

T~ forcing term varying on the on the length scale L and on time scale L/D

non-dimensional form

n=vy/L, (=z/L, T =ant/L, ¢ = a/(el) e=an/D

o _ Ag + o[Vl _ WG r/e) where 1) = 2 <5u1f) | = O(ve/an)

an

OT2 oT oT

1 is a small term varying on the short (reduced) time scale € and on the (reduced) length scale unity

O /0t is a small (reduced) forcing term fluctuating rapidly [0y/07] = O(ve/(€@y)) (Ve/Tu < €)

N umem'cal res ’U,ZtS length scale of wrinkles of the shock front
Denet (2015) the turbulence at the shock front at time 7 = 4 after starting the interaction

The characteristic cell size of the patterns

at the shock front is much larger

than the integral scale of the turbulence

The size of the patterns looks to grow with time
Saturation by the box size ?
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Spectral analysis of the pattern size ol

Evolution of the spectra of the wrinkles of the front shock

The size of the pattern increases with time

0.005
turbulence spectrum FE(k)

Denet (2015)

10 ‘ 20 ‘ 30 40 50 - 60
wave number

DNS  Larson et al. (2013) Model equation Denet (2015)
DNS shock-vortex interaction v viseh Lodato (2015)
D/a, = 2, Ve /Gy = 0.8, ~v=14

Two Mach stems are observed
as in the model equation




