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VII-I) Introduction

Flammability limits Critical conditions of ignition

Limits for upstream propagation �= downstream propagation

Turbulence facilitates ignition of hydrocarbon lean mixtures
Turbulence may suppress ignition of hydrocarbon rich mixtures

Some hydrocarbon lean mixtures that are flammable cannot be ignited quasi-isobarically
Some hydrocarbon rich mixtures that are non-flammable can sustain curved flames

Ignition in turbulent flows
Princeton experiments (2014) Wu & al.
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P.Clavin VII VII-2) Zeldovich critical radius
Flame kernel for a flame far from the flammability limits

Zeldovich
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reaction rateR � Rf : � = �f , ⇥ = 0; R�� : � = 0, ⇥ = 1
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Unstable steady spherical solution for the one-step model of adiabatic flames
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R � Rf : � = �f , ⇥ = 0; R�� : � = 0, ⇥ = 1

� � (T � Tu)/(Tb � Tu) � � Y/Yu �rb � �r(Tb) cp(Tb � Tu) = qRYu

Unstable steady spherical solution for the one-step model of adiabatic flames
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DCnHm < DO2 � DT , Le � DO2/DCnHm > 1

Lean hydrocarbon mixtures Le > 1 are di�cult to ignite (Rf > dL)

Extension of the Zeldovich analysis to a constant energy source

Flame balls in micro-gravity experiments (Ronney 1985-2004)
lean hydrogen mixtures, diameter = 2� 15 mm

(Deshaies Joulin 1984)

Rfconvective flux dRf/dt < 0Rf Rf < Rf : |di�usion fluxes| � 1/R

Rf Rf > Rf : |di�usion fluxes| � 1/R

heat flux towards the preheated zone

convective flux dRf/dt > 0 Rf

convection should be added to restore equilibrium

�f = 1/Le = cst.� = �fRf/R preheated zone at rest

d�/dR|R=Rf = ��f/Rf

Instability ? (adiabatic condition)

Stabilization in the presence of heat loss (Buckmaster, Joulin, Ronney 1990)for Le < 1

Stability analyses

positive feed back: amplification

Quasi-isobaric ignition as a nucleation problem

Le < 1 : Rf � dL Le > 1 : Rf � dL
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VII -3) Critical radius near the flammability limits
(He Clavin 1993-94)

R � Rf : � = �f , ⇥ = 0; R�� : � = 0, ⇥ = 1

�DT
1

R2

d
dR

�
R2 d�

dR

�
= D

1
R2

d
dR

�
R2 d⇥

dR

�
= Ẇ
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model of lecture VI p. 6, 7
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dL for �� 1, Le = 1, 2ndreaction order

Preheated zone and matching
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= ��f

Rf

R2
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1
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flame temperature of the spherical flame

Tf � T � � Rf/dL ��
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�f � �

�
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�
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measure of the distance from the flammability limit: �f � [0,�]d� = ��d�
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Le < 1� Tf > Tb

Flammability limit

non-flammable mixtures
that can be ignited

(flame balls)

Flammability limit

flammable mixtures
that cannot be ignited
(infinite critical radius)

Tf = T �

Flammable mixtures
Flame kernels

(a)

d�L/dL

Tb = T �

Le > 1� Tf < Tb

�f �
Tf � Tu

Tb � Tu
=

1
Le

temperature of the spherical flame kernel

�f = 1/Le

energetic mixtures

Tb

energetic mixtures

Tb

� � T � Tu

Tb � Tu

�� depends on the composition

depends on the composition

�� � T � � Tu

Tb � Tu

temperature of the planar flame

Tb is determined by the composition of the mixture YRu (mass fraction of the limiting component)

T � is determined by the chemical kinetics YRu

Tb = T �Tf = T �

Flammable mixtures
Flame kernels

(b)

d�L/dL

Tf = T �

Le > 1 : Heavy hydrocarbon lean mixtures
Hydrogen rich mixtures

Le < 1 : Heavy hydrocarbon rich mixtures
Hydrogen lean mixtures
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Flammability limits Critical conditions of ignition
Some hydrocarbon lean mixtures that are flammable cannot be ignited quasi-isobarically
Some hydrocarbon rich mixtures that are non-flammable can sustain curved flames

Turbulence facilitates ignition of hydrocarbon lean mixtures
Turbulence may suppress ignition of hydrocarbon rich mixtures

Ignition in turbulent flows
Princeton experiments (2014) Wu & al.

Limits for upstream propagation �= downstream propagation

Buoyancy promoted curved flames
non-flammable hydrocarbon rich flames

simplest explanation:

Turbulent di�usion coe⇥cients are all equal� Le = 1

�
Le > 1
Le < 1
laminar turbulent
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VII-4) Dynamics of slowly expanding flame kernels

trelax �
R2

DT
� tevol �

Rf

Ṙf
quasi-steady state ?

Q̇ = cst.

dT � Tu =
1
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1
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� �
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�
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T (R, t)� Tu =
� t
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Q̇(t� ⇤)
⇥cp

exp(�R2/4DT ⇤)
(4�DT ⇤)3/2

d⇤

�T/�t = DT �Texact solution of the heat equation with a point energy source point source, R = 0, t > 0 : Q̇(t)

⇥�
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� Ṙf

⇥�

⇥R
�DT

1
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⇥

⇥R

�
R2 ⇥�

⇥R

�
= 0

preheated zone in the reference frame attached to Rf (t) Ṙf �
dRf

dt

Quasi-steady preheated zone of flame kernel ?

The evolution of spherical flame kernel cannot be quasi-steady at large distance

R�
�

DT tevol, not valid at large distance

relax time toward (T � Tu) � 1/R increases with R like R2/DT

R2/(4DT t)� 0



(Joulin 1985)
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ṙf (� � � �)
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Extension to a short pulse of an energy source (Joulin 1985)

Extension to the proximity of flammability limits + heat loss (Clavin 2015)

The structure and the dynamics of flame kernels �= planar flames even for Rf � dL (� � �f/R)

(Ronney 1985-1990)
Self-extinguished flames in micro-gravity experiments of lean methane-air mixtures

Dynamical quenching of flame kernels in nonflammable mixturesfor Le < 1
(Clavin 2016)

1�
rf

+ Hbr2f = 1� I(�) where I(�) �
� �

0

d� �

� �1/2
ṙf (� � � �)

For Le < 1 and near to the Zeldovich radius the slow evolution of flame kernels

is governed by the di�usion at large distance

 12



Rf

dL
� 1,Quasi-steady state approx valid only when

Ṙf � UL

UL
� 1, d � dL,

VII-5) Quasi-steady dynamics of thin flames ?P.Clavin VII
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thin flames: flame thickness (� DT /Ṙf )� Rf

⇥�

⇥t
�

�
Ṙf + 2

DT

R

�
d�

dx
�DT

d2�

dx2
= 0x � (R�Rf )

��moving frame

(R > Rf )quasi-steady preheated zone
Ṙf

Rf
� DT

(DT /Ṙf )2
� Rf Ṙf � DT

di�usion time on the flame thicknessevolution time �

also negligible !

Almarcha Quinard (2015)

rich propane-air flame

�
Uf

UL

�
ln

�
Uf

UL

�
= �

�
1
Le
� 1

�
�

dL

Rf

no solution below a minimum radius

�
Uf

UL

�
ln

�
Uf

UL

�

1/e

Le < 1

Uf/UL

�(Le�1 � 1)�dL/Rf

1/e

Uf = �Ṙf > 0 dL/Ṙf = O(1/�)

Steady converging flames. Opened-tip Bunsen flames
Frankel Sivashinsky (1984)

Le < 1

heavy hydrocarbon rich flame

numerical results of He (2000) extended to Rf Ṙf � DT !

F (Ṙf , Rf ) = 0

numerical results for a constant heat source
extension of the Deshaies Joulin analysis (1983) by He (2000)

+ asymptotic analysis � ��
thin reaction zone �

qualitative agreements with the experiments by Kelley et al. (2009)

Semi-phenomenological model
�

�
Ṙf + 2

DT

R

�
d�

dx
�DT

d2�

dx2
= 0

�
�
Ṙf + 2

D

R

�
d�

dx
�D

d2�

dx2
= 0

Critical conditions for spherical flame initiation 167

Figure 3. Variation of the flame velocity obtained from equation (12) with an ignition power
Qs = 2 and an infinitely long duration as a function of the flame radius. RZ,− and RZ,+ are two
solutions for the super-adiabatic stationary flame ball.

 

Figure 4. Variation of the flame velocity obtained from equation (12) with different values of the
heat power as a function of the flame radius.
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