Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 7: Electronic Spectra of Diatomics

- 1. Term symbols for diatomic molecules
- 2. Common molecular models for diatomics
- 3. Improved treatments
- 4. Quantitative absorption

1. Term symbols for diatomic molecules

Term symbols characterize key features of electron spin and orbital angular momentum

Important terms

For an atom: ${}^{2S+1}L_J$ For a diatomic: ${}^{2S+1}\Lambda_{\Omega}$

 $\vec{\Lambda}$ projection of orbital angular momentum onto the internuclear axis. Magnitude: $|\vec{\Lambda}| = \Lambda \hbar$ Symbols: Λ 0 1 2 Symbol Σ Π Δ Atom

- \vec{S} total electronic spin angular momentum (the sum of electron spin in unfilled shells) Magnitude: $|S| = S\hbar$, S will have 1/2-integer values
- projection of \vec{S} onto the internuclear axis (only defined when $\Lambda \neq 0$). $\vec{\Sigma}$ Magnitude: $|\Sigma| = \Sigma \hbar$ Allowed values: $\Sigma = S, S - 1, ..., -S (2S + 1 \text{ values})$

Ω sum of projections along the internuclear axis of electron spin and orbital angular momentum

$$\vec{\Omega} = \vec{\Sigma} + \vec{\Lambda}$$

$$\Omega = \Lambda + S, \Lambda + S - 1, ..., \left| \Lambda - S \right| \quad (2S + 1 \text{ values for } \Lambda \ge S)$$

1. Term symbols for diatomic molecules

Examples

- NO The ground state for NO is X²Π For a diatomic: ${}^{2S+1}\Lambda_{g}$ S = 1/2, Λ = 1, Ω = 3/2, 1/2 There are two spin-split sub-states: ${}^{2}\Pi_{1/2}$, ${}^{2}\Pi_{3/2}$ Separation: 121cm⁻¹
- CO The ground state for CO is $X^{1}\Sigma^{+}$ S = 0 and Λ = 0, therefore Ω is unnecessary. This is a rigid rotor molecule. Easiest case!
- O₂ The ground state for O₂ is $X^{3}\Sigma_{g}^{-}$ S = 1, Λ = 0

The - and $_{g}$ are notations about symmetry properties of wave functions. This is an example of a molecule that is modeled by Hund's case **b**

Four common molecular models

Rigid Rotor	$\Lambda = 0, S = 0$	$2S+1 = 1 \Rightarrow$ "singlets"
Symmetric Top	$\Lambda \neq 0, S = 0$	on spectra
Hund's <i>a</i>	$\Lambda \neq 0, S \neq 0$	Spin important through
Hund's <i>b</i>	$\Lambda = 0, S \neq 0$	\int interaction of Λ and Σ

• This lecture:

Rigid Rotor Symmetric Top

Followed by:

Hund's a

Hund's b

Rigid rotor $(^{1}\Sigma)$

- $\Lambda = 0, S = 0 \Rightarrow {}^{1}\Sigma$ type, Ω is not defined
- A = 0 means the projection of the orbital angular momentum onto the A-axis is zero, and rotation must thus be around the B-axis

• Rigid rotor $(^{1}\Sigma)$

Rotational Energy $F(J) = B_v J (J+1) - D_v J^2 (J+1)^2$

Total Energy $E(T_e, v, J) = T_e + G(v) + F(J)$ Energy Change $\Delta E = \Delta T_e + \Delta G + \Delta F$

Selection Rules Rotational spectra: $\Delta J = J' - J'' = +1$ Rovibrational spectra: $\Delta v = v' - v'' = +1$ $\Delta J = \pm 1$

Rovibronic spectra: Δv determined by Frank-Condon factors

 $\Delta J = \pm 1$

Note: an alternate form is sometimes used

$$\Delta \alpha = \alpha_{\text{final}} - \alpha_{\text{initial}}$$
$$\alpha = J \text{ or } v$$

Rigid rotor (¹Σ)

Intensity Distribution Within each band (v', v"), the intensity distribution follows the Boltzmann distribution for J modified by a J-dependent branching ratio (i.e., for the P and R branch), known as the Hönl-London factor.

The relative intensities <u>among all the vibrational bands</u> originating from a single initial level $v_{initial}$ to all possible final levels v_{final} are given by Franck-Condon factors.

The relative <u>total emission or absorption</u> from $v_{initial}$ depends directly on the Boltzmann fraction in that level, i.e., $n_{v initial}/n$

Examples Most stable diatomics: CO, Cl₂, Br₂, N₂, H₂ are rigid rotors Exceptions: NO (X² Π), O₂(X³ Σ)

Note: no X Δ states for diatomics – all X states are Σ or Π ! Some linear polyatomics: $CO_2(\tilde{X}^1 \ltimes^1_g)$, HCN and $N_2O(\tilde{X}^1 \ltimes^1)$ are rigid rotors with ${}^1\Sigma$ ground states.

Nuclear spin will have an impact on the statistics of homonuclear diatomic molecules

Symmetric top

- Λ ≠ 0, S = 0 (non-zero projection of orbital angular momentum on the internuclear axis and zero spin) ⇒ ground states ¹Π, ¹Δ
- Important components
 - \vec{N} angular momentum of nuclei

• $\vec{\Lambda}$ A-axis projection of electron orbital angular momentum

total angular momentum; $\vec{J} = \vec{N} + \vec{\Lambda}$

Only the axial component of orbital angular momentum is used, because only $\vec{\Lambda}$ is a "good" quantum number, i.e., a constant of the motion

Symmetric top (
$$\Lambda \neq 0$$
, S = 0)

Rotational Energy $F(J) = BJ(J+1) + (A-B)\Lambda^2, J = \Lambda, \Lambda + 1,...$ $A, B = \frac{h}{8\pi^2 c I_{A,B}}$ Same spacing as the rigid rotor, but with a constant offset

Since $I_A < I_B$, A > B, lines with $J < \Lambda$ are missing, as $J = \Lambda, \Lambda+1, ...$

Selection Rules $\Delta \Lambda = 0, \Delta J = \pm 1, 0$ ($\Delta J = 0$ is weak) $\Delta \Lambda = \pm 1, \Delta J = \pm 1, 0$

> As a result of having a Q branch (i.e., $\Delta J = 0$), the bands for a symmetric top will be doubleheaded, in contrast to the single-headed character of rigid rotor bands

Symmetric top (
$$\Lambda \neq 0$$
, S = 0)

Spectra for $\Delta \Lambda = 0$ ($^{1}\Pi \leftarrow ^{1}\Pi$ or $^{1}\Delta \leftarrow ^{1}\Delta$)

$$T' = B'J'(J'+1) + (A'-B')\Lambda^2 + G(v') + T_e' = 0 \text{ for ground state}$$

$$T'' = B''J''(J''+1) + (A''-B'')\Lambda^2 + G(v'') + T_e'''$$

$$\overline{v}_{\infty} = \text{upper}(\text{for } J'=0) - \text{lower}(\text{for } J''=0) = \text{constant}$$

$$P(J'') = \overline{\nu}_{\infty} - (B'+B'')J + (B'-B'')J^{2}$$

$$Q(J'') = \overline{\nu}_{\infty} + (B'-B'')J + (B'-B'')J^{2}$$

$$R(J'') = \overline{\nu}_{\infty} + (B'+B'')(J+1) + (B'-B'')(J+1)^{2}$$

$$m_p = -J$$

 $m_Q = +J$
 $m_R = J + 1$ P and R branches: $\overline{\nu} = \overline{\nu}_{\infty} + am + bm^2$
Q branch: $\overline{\nu} = \overline{\nu}_{\infty} + bm + bm^2$
where $a = B' + B'', b = B' - B''$

Symmetric top (
$$\Lambda \neq 0$$
, S = 0)

Spectra for $\Delta \Lambda = 0$

Fortrat parabola, $^{1}\Delta \leftarrow ^{1}\Delta$ P and R branches: $\overline{v} = \overline{v}_{\infty} + am + bm^2$ m Q branch: $\overline{v} = \overline{v}_{\infty} + bm + bm^2$ R-branch 10 m=J+1 where a = B' + B'', b = B' - B''Q-branch 5 Notes: m=J Band heads in the Q and R branches for the typical case of B'<B". 0 • $m_P = -J, m_Q = +J, m_R = J+1$ Lines missing • $J_{min} = 2$ for $^{1}\Delta \leftarrow ^{1}\Delta$ -5 ➡ m_{min}=3 for R branch near the origin! m_{min}=2 for Q branch P-branch -10 |m_{min}|=3 for P branch m= -J missing lines near the origin Intensity Distribution 19950 20050 20000 Frequency [cm⁻¹] Relative intensities depend on $[n_1/n, and$ Hönl-London factors $(S_{I}^{P,Q,R})$ - "relative intensity factors / line strengths"
→ breakdown of the principle of equal probability 11

Example – 1: Hönl-London Factors for Symmetric Top (see Herzberg)

For
$$\Delta \Lambda = 0$$
 $S_J^R = \frac{(J+1+\Lambda)(J+1-\Lambda)}{J+1} \approx J+1 \ (J \gg \Lambda)$
 $S_J^Q = \frac{(2J+1)\Lambda^2}{J(J+1)} \approx \frac{2\Lambda^2}{J} \approx 0$ for large J
 $\sum S_J^P = \frac{(J+\Lambda)(J-\Lambda)}{J} \approx J$ for large J

Notes:

1. $\Sigma S_J = 2J+1$, the total degeneracy!

2. The R-branch line for a specific J, is ~ J+1/J times as strong as the P-branch line

3. For
$$\Delta \Lambda = \pm 1$$
, $J >> \Lambda$
 $S_J^R = \frac{(2J+1)}{4}$
 $S_J^Q = \frac{(2J+1)}{2}$
 $S_J^P = \frac{(2J+1)}{4}$

Q branch lines are twice as strong as P and R lines!

 $\Delta\Lambda$ value is important in determining the relative line and branch strengths of rovibronic spectra.

Example – 2: Symmetric Top Ground State

If X = ${}^{1}\Pi$, possible transitions (Recall $\Delta \Lambda = 0, \pm 1$)

¹ Π ← ¹ Π	$\Pi^{1} \rightarrow \Delta^{1}$	$^{1}\Sigma \leftarrow ^{1}\Pi$
$\Delta \Lambda = 0$	$\Delta \Lambda = 1$	$\Delta \Lambda = -1$

- 1. Three separate "systems" of bands possible from $X^1\Pi$
- 2. Hönl-London factors for $\Delta \Lambda = \pm 1$ differ from for $\Delta \Lambda = 0$ (see previous page)

3. Electronic Spectra of Diatomic Molecules: Improved Treatments (add Spin)

- 1. Review of angular momentum
- 2. Interaction of Λ and Σ
- 3. Hund's case a ($\Lambda \neq 0$, S $\neq 0$)
- 4. Hund's case b ($\Lambda = 0, S \neq 0$)
- **5**. Λ-doubling

- Review then add spin
 - Term symbol

- Electronic angular momentum for molecules
 - Orbital angular momentum of electrons
 - 1. Separate from spin and nuclear rotation
 - 2. Strong electrostatic field exists between nuclei.

So \tilde{L} precesses about field direction (internuclear axis) with "allowed" components along axis

3. If we reverse direction of electron orbit in \vec{E} field, we get the same energy but $\Lambda \rightarrow -\Lambda$ (Λ doubling)

- Electronic angular momentum for molecules
 - Spin of electrons
 - 1. To determine L and S for molecule, we usually sum I & s for all electrons. e.g., $S = \sum_{i} s_{i}$

So even number of electrons → integral spin

odd number of electrons <a>half-integral spin

2. For $\Lambda \neq 0$, precession of L about internuclear axis \Rightarrow magnetic field along axis. So m_s is defined. m_s $\equiv \Sigma = S, S-1, \dots -S$.

Note for change of orbital direction, energy of electron spinning in magnetic field changes \Rightarrow no degeneracy \Rightarrow 2S+1 possibilities (multiplets)

3. For $\Lambda = 0$, no magnetic field exists and the projection of S on the nuclear axis is not conserved (Σ not defined)

- Electronic angular momentum for molecules
 - Total electronic angular momentum
 - 1. Total electronic angular momentum along internuclear axis is $\vec{\Omega} = \vec{\Lambda} + \vec{\Sigma}$ But since all in same direction, use simple addition

 $\Omega = \left| \Lambda + \Sigma \right|$

2. For $\Lambda \neq 0$, magnetic field $H \propto \Lambda$.

Magnetic moment of "spinning" electron $\mu_H \propto \Sigma$.

So interaction energy is proportional to E ~ μ H ~ $\Lambda\Sigma$, or

 $T_e = T_0 + A\Lambda\Sigma$ (more on this later)

3.2. Interaction of Λ and Σ

 This interaction is key to modeling the influence of spin on the electronic state structure.

When $\Lambda \neq 0$, S $\neq 0$, they combine to form a net component of Ω .

 $\Lambda \neq 0 \Rightarrow$ an associated magnetic field due to net current about the axis. This field interacts with spinning electrons.

Spin-orbit coupling (spin-splitting of energy levels)
 Comments:

- Models are only approximations.
- Coupling may change as J ranges from low to high values

3.2. Interaction of Λ and Σ

Examples

$$\begin{array}{c} {}^{3}\Delta_{3} \blacklozenge S = 1, \Lambda = 2, \Omega = 3 (\Sigma = 1) \\ {}^{3}\Delta_{2} \blacklozenge S = 1, \Lambda = 2, \Omega = 2 (\Sigma = 0) \\ {}^{3}\Delta_{1} \blacklozenge S = 1, \Lambda = 2, \Omega = 1 (\Sigma = -1) \end{array} \\ \hline \\ \begin{array}{c} \text{Electronic energies} \\ T_{e} = T_{0} + A\Lambda\Sigma \\ \uparrow & \bot \\ \end{array} \\ \begin{array}{c} \text{Spin-orbit coupling constant, generally} \\ \text{increases with molecular weight and} \\ \text{the number of electrons} \end{array} \\ \begin{array}{c} \text{Spin-orbit coupling constant, generally} \\ \text{increases with molecular weight and} \\ \text{the number of electrons} \end{array} \\ \begin{array}{c} \text{Spin-orbit coupling constant, generally} \\ \text{increases with molecular weight and} \\ \text{the number of electrons} \end{array} \\ \begin{array}{c} \text{Spin-orbit coupling constant, generally} \\ \text{increases with molecular weight and} \\ \text{the number of electrons} \end{array} \\ \begin{array}{c} \text{Spin-orbit coupling constant, generally} \\ \text{increases with molecular weight and} \\ \text{the number of electrons} \end{array} \\ \begin{array}{c} \text{Spin-orbit coupling constant, generally} \\ \text{increases with molecular weight and} \\ \text{the number of electrons} \end{array} \\ \begin{array}{c} \text{Spin-orbit coupling constant, generally} \\ \text{increases with molecular weight and} \\ \text{the number of electrons} \end{array} \\ \begin{array}{c} \text{Spin-orbit coupling constant, generally} \\ \text{increases with molecular weight and} \\ \text{the number of electrons} \end{array} \\ \begin{array}{c} \text{Spin-orbit coupling constant, generally} \\ \text{Spin-orbit coupling constant, generally} \\$$

Now, consider Hund's cases where $S \neq 0$

3.3. Hund's case a

•
$$\Lambda \neq 0, S \neq 0, \Sigma = S, S-1, ..., -S$$

$$F(J) = BJ(J+1) + (A-B)\Omega^{2}$$
$$\Omega = \Lambda + S, \Lambda + S - 1, ..., |\Lambda - S|$$
$$J = \Omega, \Omega + 1, ...$$

• Recall

$$A = \frac{h}{8\pi^2 I_A c}, B = \frac{h}{8\pi^2 I_B c}$$
Not to be confused
with spin-orbit constant

P, Q, R branches for each value of Ω .

Example:

 $^{2}\Pi \Rightarrow \Omega = 3/2$ and 1/2, two electronic sub-states

 \Rightarrow a total of 2 x 3 = 6 branches

3.4. Hund's case b

Applies when spin is *not* coupled to the A-axis

• E.g., 1. For $\Lambda = 0$, $\vec{\Sigma}$ is not defined, must use \vec{S}

2. At high J, especially for hydrides, even with $\Lambda \neq 0$

Allowed J: J = N+S, N+S-1, ..., N-S, J \geq 0 only For this case, \vec{S} and \vec{N} couple directly,

3.4. Hund's case b

Example $-O_2$

Ground state $X^{3}\Sigma$ has three J's for each N!

Split rotational levels for N > 0

- Each level has a degeneracy of 2J + 1, and a sum of Hönl-London factors of 2J + 1
- Minimum J is [N-S]
- In N = 0 level, only spin is active (S = 1), this is the minimum value of J

3.5. Λ – doubling

- Further complexity in the energy levels resulting from Λ-doubling
 - Different coupling with nuclear rotation (\vec{N} and $\vec{\Lambda}$ interaction)

The two orientations of $\vec{\Lambda}$ (± Λ along the A-axis) have slightly different energies

$$F(J) \rightarrow F_c(J)$$
 and $F_d(J)$

- By definition, $F_c(J) > F_d(J)$ (c,d replaced by e,f in some literature)
- Lambda doubling usually results in a very small change in energy, affecting Boltzmann distribution only slightly.
- Change of parity between A-doubled states reduces the accessible fraction of molecules for a given transition (due to selection rules)

 Review of Beer's law and spectral absorption as interpreted for molecules with multiplet structure

Beer's Law
$$\left(\frac{I}{I^0}\right)_v = \exp(-k_v L)$$

• For two-level system $k_{v} = S_{12}\phi(v) = \left(\frac{\pi e^{2}}{m_{e}c}\right) n_{1}f_{12}\left(1 - \exp(-hv/kT)\right)\phi(v)$ $f_{ij}, i - \text{initial}, j - \text{final}$ Integrated absorption intensity [cm⁻¹s⁻¹]

For a complex, multiple level system, we have 2 quantities to specify:

Boltzmann fraction?

• Oscillator strength for a specific transition?

Boltzmann fraction

$$n_1 = n_i \frac{n_1}{n_i}$$

 n_i = the total number density of species I n_1/n_i = the fraction of species i in state/level 1

$$\frac{n_1}{n_i} = \frac{N_i(n, \mathbf{v}, \Sigma, \Lambda, J, N)}{N_i}$$

Quantum numbers:

 $\begin{array}{l} n - \text{electronic} \\ v - \text{vibrational} \\ \Sigma - \text{spin} \\ \Lambda - \text{orbital} \\ J - \text{total angular momentum} \\ N - \text{nuclear rotation} \\ c \text{ or } d - \Lambda \text{-component} \end{array}$

We will illustrate this in the next lecture!

Oscillator strength

Strength of a specific, single transition (i.e., from one of the J" substrates to a specific J' substrate), f_{J"J'}

Notes:

$$\sum_{\mathbf{v}'} q_{\mathbf{v}''\mathbf{v}'} = 1$$

- $\sum_{J'} S_{J''J'} = (2J''+1)[(2S+1)\delta] \delta = 1 \text{ for } \Sigma \Sigma, \text{ otherwise } \delta = 2 (\Lambda \text{doubling}).$ [(2S+1) δ] = 4 for OH's $A^2\Sigma \leftarrow X^2\Pi$ system.
- $\sum_{v',J''} f_{J''J'} = [(2S+1)\delta]f_{el}$ sum is f_{el} for a single J'' substate.

Oscillator strength

Remarks

1. Band oscillator strength $f_{v"v'} = f_{el}q_{v"v'}$ → often is tabulated e.g., $f_{00} = 0.001$ (OH A²Σ←X²Π)

2.
$$f_{J''J'} = f_{v''v'} \left(\frac{S_{J''J'}}{2J''+1} \right)$$

e.g., if only P and R are allowed $S_{J''J'}^P = J'', S_{J''J'}^R = J''+1$

3. In some cases, an additional "correction term" $T_{J^{"}J^{"}}$ is used, e.g., in OH $f_{J^{"}J^{"}} = f_{v^{"}v^{'}} \left(\frac{S_{J^{"}J^{"}}}{2J^{"}+1} \right) T_{J^{"}J^{"}}, T_{J^{"}J^{"}}$ always near 1

4. In terms of A-coefficient
$$f_{v'v'} = \left(\frac{m_e c \lambda^2}{8\pi^2 e^2}\right) A_{v'v''} \left(\frac{g_{e'}}{g_{e''}}\right)$$

$$=\frac{g_{e'}}{g_{e''}}f_{v'v''}$$

Next: Case Study of Molecular Spectra

Ultraviolet: OH

Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 8: Case Study: UV - OH

UV absorption of OH: $A^2\Sigma^+ - X^2\Pi$ (~300nm)

- 1. Introduction
- 2. OH energy levels
 - Upper level
 - Lower level
- 3. Allowed radiative transitions
 - Transition notations
 - Allowed transitions
- 4. Working example OH

1. Introduction

OH, a prominent flame emitter, absorber.
 Useful for T, X_{OH} measurements.

1. Introduction

- Steps in analysis to obtain spectral absorption coefficient
 - 1. Identify/calculate energy levels of upper + lower states
 - 2. Establish allowed transitions
 - 3. Introduce "transition notation"
 - 4. Identify/characterize oscillator strengths using Hönl-London factors
 - 5. Calculate Boltzmann fraction
 - 6. Calculate lineshape function
 - 7. Calculate absorption coefficient

Term energies

Angular momentum energy (nuclei + electrons)

Separation of terms: Born-Oppenheimer approximation

•
$$G(v) = \omega_e(v + 1/2) - \omega_e x_e(v + 1/2)^2$$

- Sources of T_e , ω_e , $\omega_e x_e \Rightarrow$ Herzberg
- Overall system : A²Σ⁺←X²Π

in [cm⁻¹]

Α²Σ+	T _e	ω _e	ω _e x _e	Х²П	T _e	ω _e	ω _e x _e
	32682.0	3184.28	97.84		0.0	3735.21	82.21

Let's first look at the upper state + Hund's case b!

■ Hund's case b (Λ =0, S≠0) – more standard, especially for hydrides

Recall:

- Σ, Ω not rigorously defined
- N = angular momentum without spin
- S = 1/2-integer values
- J = N+S, N+S-1, ..., |N-S|
- i = 1, 2, ...

 $F_i(N)$ = rotational term energy

Now, specifically, for OH?

The upper state is A²Σ⁺

For OH:

- $\Lambda = 0, \therefore \Sigma$ not defined \Rightarrow use Hund's case b
- N = 0, 1, 2, ...
- S = 1/2
- J = N ± 1/2
- F_1 denotes J = N + 1/2 F_2 denotes J = N - 1/2

Common to write either $F_1(N)$ or $F_1(J)$

The upper state: A²Σ⁺

•
$$F_1(N) = B_v N(N+1) - D_v [N(N+1)]^2 + \gamma_v N$$
 for pure case b
 $F_2(N) = B_v N(N+1) - D_v [N(N+1)]^2 - \gamma_v (N+1)$
(splitting constant $\gamma_v \approx 0.1 \text{cm}^{-1}$ for OH $A^2 \Sigma^+$)

• \therefore the spin-splitting is $\gamma_v(2N+1) \Rightarrow$ function of v; increases with N

- Notes:
- Progression for A²Σ⁺
- "+" denotes positive "parity" for even N [wave function symmetry]
- Importance? Selection rules require parity change in transition
The ground state: $X^2\Pi$ (Λ =1, S=1/2)

Hund's case a $\Lambda \neq 0, S \neq 0, \Sigma$ defined

Hund's case b $\Lambda = 0, S \neq 0, \Sigma$ not defined

- Note:
 - 1. Rules less strong for hydrides
 - OH behaves like Hund's a @ low N like Hund's b @ large N

 at large N, L
 couples more to N, ∧ is less defined, S decouples from A-axis
 - 3. Result? OH X²Π is termed "intermediate case"

■ The ground state: X²Π

Notes:

3. For "intermediate/transition cases"

$$F_{1}(N) = B_{\nu} \left\{ (N+1)^{2} - \Lambda^{2} - \frac{1}{2} \left[4(N+1)^{2} + Y_{\nu}(Y_{\nu}-4)\Lambda^{2} \right]^{1/2} \right\} - D_{\nu} [N(N+1)]^{2}$$

$$F_{2}(N) = B_{\nu} \left\{ N^{2} - \Lambda^{2} + \frac{1}{2} \left[4N^{2} + Y_{\nu}(Y_{\nu}-4)\Lambda^{2} \right]^{1/2} \right\} - D_{\nu} [N(N+1)]^{2}$$

where $Y_v \equiv A/B_v$ (< 0 for OH); A is effectively the moment of inertia Note: $F_1(N) < F_2(N)$

Behaves like Hund's a, i.e., symmetric top, with spin splitting AA

For large N

For small N

Behaves like Hund's b, with small (declining) effect from spin $F_1 \rightarrow B_{\nu} [(N+1)^2 - \Lambda^2 - (N+1)]$ $F_2 \rightarrow B_{\nu} [N^2 - \Lambda^2 + N]$ $P_1 - F_2 \rightarrow B_{\nu} [(N+1)^2 - N^2 - (2N+1)] \rightarrow 0$

■ The ground state: X²Π

Notes:

 $T_{e} = T_{0} + A\Lambda\Sigma$ J For OH, $A = -140 \text{ cm}^{-1}$ \Rightarrow T_ρ = T₀ + (-140)(1)(1/2), Σ = 1/2 5/2 + (-140)(1)(-1/2), $\Sigma = -1/2$ $\Rightarrow \Delta T_{e} = 140 \text{ cm}^{-1}$ 3/2 Not too far off the 130 cm⁻¹ spacing for minimum J 1/2 Recall: Hund's case a has constant difference of $2(A-B_v)$ for same J $F(J) = BJ(J+1) + (A-B)\Omega^2$ (A–B)Ω² ≈ -158.5Ω² (A for OH~ -140, B ~ 18.5), $\Omega = 3/2$, 1/2 $\Omega = 3/2$ state lower by <u>316</u> cm⁻¹ Actual spacing is only 188 cm⁻¹, reflects

that hydrides quickly go to Hund's case b

■ The ground state: X²Π

Notes:

5. Role of Λ -doubling

Showed earlier that $F_1 < F_2$

$$\begin{cases} F_{ic} = F_i(J) + \delta_c J(J+1) \\ F_{id} = F_i(J) + \delta_d J(J+1) \end{cases} F_{id} < F_{ic} \end{cases}$$

- F_{ic}(J) F_{id}(J) ≈ 0.04 cm⁻¹ for typical J in OH
- c and d have different parity (p)
- Splitting decreases with increasing N

Now let's proceed to draw transitions, but first let's give a primer on transition notation.

Transition notations

Full description: $A^2\Sigma^+$ (v') $\leftarrow X^2\Pi$ (v") $^{\vee}X_{\alpha\beta}$ (N" or J")

$$^{Y}X_{\alpha\beta}(N" \text{ or } J")$$

where $Y - \Delta N$ (O, P, Q, R, S for $\Delta N = -2$ to +2) $X - \Delta J$ (P, Q, R for $\Delta J = -1, 0, +1$) $\alpha = i$ in F_i '; i.e., 1 for F_1 , 2 for F_2 $\beta = i$ in F_i ''; i.e., 1 for F_1 , 2 for F_2

Notes:

Strongest trans. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

- Y suppressed when $\Delta N = \Delta J$
- e.g., $R_1(7)$ or R_17 [2. β suppressed when $\alpha = \beta$
 - 3. Both N" and J" are used
 - General selection rules
 - Parity must change $+ \rightarrow \text{ or } \rightarrow +$
 - ∆J = 0, ±1
 - No Q (J = 0) transitions, $J = 0 \rightarrow J = 0$ not allowed

Example: ${}^{S}R_{21}$: $\Delta J = +1, \Delta N = +2$ $F' = F_2(N')$ $F'' = F_1(N'')$

Allowed transitions

Allowed rotational transitions from N["]=13 in the $A^2\Sigma^+ \leftarrow X^2\Pi$ system

- 12 bands possible (3 originating from each lambda-doubled, spin-split X state)
- Main branches: $\alpha = \beta$; Cross-branches: $\alpha \neq \beta$
- Cross-branches weaken as N increases

Allowed transitions

Allowed rotational transitions from N"=13 in the $A^2\Sigma^+ \leftarrow X^2\Pi$ system

Notes:

- A given J" (or N") has 12 branches (6 are strong; $\Delta J = \Delta N$)
- + \leftrightarrow rule on parity
- $F_{1c}-F_{1d} \approx 0.04N(N+1)$ for OH \Rightarrow for N~10, Λ -doubling is ~ 4cm⁻¹, giving clear separation
- If upper state has Λ-doubling, we get <u>twice</u> as many lines!

Allowed transitions

Allowed rotational transitions from N"=13 in the $A^2\Sigma^+ \leftarrow X^2\Sigma^+$ system

- Note:
 - 1. The effect of the parity selection rule in reducing the number of allowed main branches to 4
 - 2. The simplification when $\Lambda=0$ in lower state, i.e., no Λ -doubling

4. Working example - OH

- Complete steps to calculate absorption coefficient
- 1. Identify/characterize <u>oscillator</u> <u>strengths</u> using Hönl-London factors
- 2. Calculate Boltzmann fraction
- 3. Calculate <u>lineshape function</u> _(narrow-band vs broad-band)
- 4. Calculate absorption coefficient

Absorption coefficient

#/cm³ of species (OH), = $\frac{p_A}{kT}$ #/cm³ in state 1, = $N_a \frac{N_1}{N_a}$ Fractional pop. in state 1 $k_v, \text{ cm}^{-1} = \left[\frac{\pi e^2}{m_e c}\right] N_1 f_{12} \left(1 - \exp^{-\frac{hv}{kT}}\right) \phi(v - v_0)$ $\phi[s] = (1/c) \phi[\text{cm}]$

Absorption oscillator strength

elec. osc. strength F-C factor H-L factor

$$f_{(n'',v'',\Sigma'',J'',\Lambda''),(n',v',\Sigma',J',\Lambda')} = f_{n''n'}q_{v''v'}\frac{S_{J''J'}}{2J''+1}$$
For OH A²Σ⁺-X²Π
elec. vib. spin ang. mom. A-doubling
or in shorthand notation $f_{J''J'} = f_{n''n'}q_{v''v'}\frac{S_{J''J'}}{2J''+1}$
 $(v',v'') \quad f_{v'v''}$
 $(0,0) \quad 0.00096$
 $(1,0) \quad 0.00028$

 $= f_{v''v'}$ = band oscillator strength

Notes: $q_{v''v'}$ and $S_{J''J'}$ are normalized

•
$$\sum_{v'} q_{v''v'} = 1$$

•
$$\sum_{J'} S_{J''J'} = (2J''+1)\underbrace{(2S+1)\delta}_{g''_{el}=4 \text{ for } X^2\Pi}$$

•
$$\sum_{J'} S_{J''J'} = (2J''+1)\underbrace{(2S+1)\delta}_{g''_{el}=4 \text{ for } X^2\Pi}$$

this sum includes the S values for all states with J"

Is $S_{J''J'} = S_{J'J''}$? \Rightarrow Yes, for our normalization scheme!

From $g_1f_{12} = g_2f_{21}$, and recognizing that 2J+1 is the ultimate (non removable) degeneracy at the state level, we can write, for a specific transition between single states

$$(2J''+1) \cdot f_{el}'' \cdot q_{v'v'} \cdot \frac{S_{J''J'}}{2J''+1} = (2J'+1) \cdot f_{el}' \cdot q_{v'v''} \cdot \frac{S_{J'J''}}{2J'+1}$$

In this way, there are no remaining electronic degeneracy and we require, for detailed balance, that $f_{el} = f_{el}, q_{v'v'} = q_{v'v'}$ and $S_{I''I'} = S_{I'I''}$

- Do we always enforce $\sum_{J'} S_{J''J'} = (2J''+1)$ for a state? → No! But note we do enforce $\sum S_{J''J'} = (2J''+1)(2S+1)\delta$ (14.17)

and
$$\sum_{J''}^{J'} S_{J''J'} = (2J'+1)(2S+1)\delta$$
 (14.19)

where, for OH $A^2\Sigma \leftarrow X^2\Pi$, (2S+1) = 2 and δ = 2.

- When is there a problem?
 - Everything is okay for Σ - Σ and Π - Π , where there are equal "elec. degeneracies", i.e., g["]_{el} = g'_{el}. But for Σ-Π (as in OH), we have an issue. In the X²Π state, $g_{el} = 4$ (2 for spin and 2 for Λdoubling), meaning each J is split into 4 states. Inspection of our H-L tables for S_{J"J} for OH $A^{2}\Sigma \leftarrow X^{2}\Pi$ (absorption) confirms $\Sigma S_{J^{"}J^{"}}$ from each state is 2J"+1. All is well. But, in the upper state, ${}^{2}\Sigma$, we have a degeneracy g'_{el} of 2 (for spin), not 4, and now we will find that the sum of $\sum_{J'J''} S_{J'J''}$ is twice 2J'+1 for a single J' when we use the H-L values for $S_{J'J'}$ for $S_{J'J''}$. However, as there are 2 states with J', the overall sum $\sum_{i} S_{J'J'} = (2J'+1)4$ as required by (14.19)

Absorption oscillator strength for f_{00} in OH A² Σ^+ –X² Π

Source	f _{oo}				
Oldenberg, et al. (1938)	0.00095 ± 0.00014				
Dyne (1958)	0.00054 ± 0.0001				
Carrington (1959)	0.00107 ± 0.00043				
Lapp (1961)	0.00100 ± 0.0006				
Bennett, et al. (1963)	0.00078 ± 0.00008				
Golden, et al. (1963)	0.00071 ± 0.00011				
Engleman, et al. (1973)	0.00096				
Bennett, et al. (1964)	0.0008 ± 0.00008				
Anketell, et al. (1967)	0.00148 ± 0.00013				

Absorption oscillator strength

Transition	S _{J"J'} /(2J"+1)	ΣF₁(J)	ΣF ₂ (J)	Σ[F ₁ (J)+F ₂ (J)]	Transition	S _{J"J} /(2J"+1)	ΣF₁(J)	ΣF ₂ (J)	Σ[F ₁ (J)+F ₂ (J)]	
Q ₁₂ (0.5)	0.667	0	2	2	P ₁ (3.5)	0.515	2	2	4	
$Q_2(0.5)$	0.667				P ₁₂ (3.5)	0.056				
$R_{12}(0.5)$	0.333				P ₂₁ (3.5)	0.167				
$R_2(0.5)$	0.333				$P_2(3.5)$	0.405				
P ₁ (1.5)	0.588	2	2	4	Q ₁ (3.5)	0.790				
P ₁₂ (1.5)	0.078				Q ₁₂ (3.5)	0.195				
P ₂₁ (1.5)	0.392				Q ₂₁ (3.5)	0.170				
P ₂ (1.5)	0.275				$Q_2(3.5)$	0.814				
$Q_{1}(1.5)$	0.562				R ₁ (3.5)	0.316				
Q ₁₂ (1.5)	0.372				R ₁₂ (3.5)	0.131				
Q ₂₁ (1.5)	0.246				R ₂₁ (3.5)	0.044				
Q ₂ (1.5)	0.678				$R_2(3.5)$	0.402				
R ₁ (1.5)	0.165				P ₁ (9.5)	0.511	2	2	4	
R ₁₂ (1.5)	0.235				P ₁₂ (9.5)	0.016				
R ₂₁ (1.5)	0.047				P ₂₁ (9.5)	0.038				
R ₂ (1.5)	0.353				$P_{2}(9.5)$	0.488				
P ₁ (2.5)	0.530	2	2	4	$Q_1(9.5)$	0.947				
P ₁₂ (2.5)	0.070				Q ₁₂ (9.5)	0.050				
P ₂₁ (2.5)	0.242				Q ₂₁ (9.5)	0.048				
P ₂ (2.5)	0.358				Q ₂ (9.5)	0.950				
Q ₁ (2.5)	0.708				R ₁ (9.5)	0.441				
Q ₁₂ (2.5)	0.263				R ₁₂ (9.5)	0.035				
Q ₂₁ (2.5)	0.214				R ₂₁ (9.5)	0.014				
Q ₂ (2.5)	0.757				R ₂ (9.5)	0.462				
R ₁ (2.5)	0.256									
R ₁₂ (2.5)	0.173					don factore f	or colo	otod O	U transitions	
R ₂₁ (2.5)	0.050									
$R_2(2.5)$	0.379								00	

4.2. Boltzmann fraction

1. We seek the fraction of molecules in a single state for which

$$\sum_{J'} S_{J''J'} = 2J'' + 1$$
$$N_i / N = g_i e^{-\varepsilon_i / kT} / Q$$
$$Q = Q_i \cdot Q_i \cdot Q_i$$

3. Electronic mode

In general,

2.

$$g_{e} = (2S+1)\phi \leftarrow \begin{array}{c} \phi = 1, \Lambda = 0\\ \phi = 2, \Lambda \neq 0 \end{array}$$
$$\begin{array}{c} g_{e} = 4 & {}^{2}\Pi\\ g_{e} = 2 & {}^{2}\Sigma \end{array} OH$$

of rot. levels produced by spin splitting & Λ -doubling = 4 for ${}^{2}\Pi$

the sum of
this over all
levels is 1
Elec. level
$$\neg$$

 $\frac{N(n)}{N} = (2S+1)\phi \exp(-hcT_e(n)/kT)/Q_e$ Note:
 $Q_e = \sum_n (2S+1)\phi \exp(-hcT_e(n)/kT)$ hund's (a) includes $A\Omega^2$

4.2. Boltzmann fraction

4. Vibrational mode

 $\frac{N(n,v)}{N(n)} = \exp(-hcG(v)/kT)/Q_v$ $Q_v = \sum_{v} \exp(-hcG(v)/kT) \qquad (Again, each of these)$ $(1 - v = 0)^{v} (1 - v)$

5. Rotational mode (hund's (b))

$$\frac{N(n,v,N)}{N(n,v)} = (2N+1)\exp(-hcF(N)/kT)/Q_r \qquad \theta_r = hcB_v/k$$
$$Q_r = \sum_{N=\Lambda}^{\infty} (2N+1)\exp(-hcF(N)/kT) \quad \Longrightarrow \quad Q_r = \frac{T}{\theta_r} \text{ for } T >> \theta_r$$

Note: don't use $F_1+F_2(N)$ here; until we add spin splitting Now what about fraction of those with N in a given J?

 $\frac{N(n,v,N,J)}{N(n,v,N)} = \frac{(2J+1)}{(2N+1)(2S+1)}$ Since # of states in N is (2N+1)(2S+1) ϕ , while # of states in J is (2J+1) ϕ $\approx \frac{1}{2}$ for OH as expected $\frac{N(n,v,N,J,p)}{N(n,v,N,J)} = \frac{1}{\phi}$ (fraction with spectral parity)

4.2. Boltzmann fraction

6. Combining $\frac{N(n,v,N,J,p)}{N} = \frac{N_1}{N} \quad \text{(i.e., the Boltzmann fraction in state 1)} \\
= \frac{N(n)}{N} \frac{N(n,v)}{N(n)} \frac{N(n,v,N)}{N(n,v)} \frac{N(n,v,N,J)}{N(n,v,N)} \frac{N(n,v,N,J,p)}{N(n,v,N)} \\
= \frac{(2J+1)\exp\left(-\frac{hc}{kT}[T_e(n)+G(v)+F_i(N)]\right)}{Q_e Q_v Q_r} \quad \text{Proper } F_i \text{ now!}$

- 1. The fraction in a given state is 1/4 of that given by rigid rotor!
- 2. Always know $\Sigma(N_i/N) = 1$, both in total and for each mode separately.

We have 1 loose end to deal with:

narrow-band and broadband absorption measurement.

4.3. Narrow-band vs broad-band absorption measurement

Narrow-band absorption Measured quantity

Measured quantity $T_{\nu} = (I / I_0)_{\nu} = \exp(-S_{12}\phi_{\nu}L)$ with $S_{12} = \begin{bmatrix} \frac{\pi e^2}{m_e c} \end{bmatrix} N_1 f_{12} \left(1 - \exp^{-\frac{h\nu}{kT}}\right)$ Oscillator strength for transition

$$\left(\frac{N_1}{N_l}\right) \left(N_l = \text{tot. no. dens. of } l = \frac{p_l}{kT}\right)$$

Boltzmann fraction of species $l = F_{v'',J'',...}(T)$

thus, if
$$T_{\nu}$$
 (e.g. T_{ν_0}) is measured, and
if L, p, 2 γ , T, f₁₂ are known
 $\stackrel{\uparrow}{=} \sum_{i} 2\gamma_i X_i$
bd.species
then can solve for N_i \leftarrow Quantity usually sought

4.3. Narrow-band vs broad-band absorption measurement

Let's look at the classical (old-time) approach, pre 1975

Broadband absorption

4.3. Narrow-band vs broad-band absorption measurement

Let's look at the classical (old-time) approach, pre 1975

Broadband absorption

Requires use of "curves of growth"

- Procedure: measure $W_{J'J'}$, calculate Δv_D and a, infer K_{J",J}, convert K_{J",J} to N_{species}
 - Note:
 - Simple interpretation only in optically 1. thin limit,

$$W_{J^{"}J^{"}} = \int \left[1 - \left(1 - K_{J^{"}J^{"}} \phi(\overline{\nu}) L \right) \right] d\overline{\nu}$$

$$W_{J''J'} = K_{J''J'}L = \frac{\pi e^2}{mc^2} N_1 f_{12}L$$

- 2. Measured eq. width is indep. of instrument broadening!
- Before lasers, use of absorption 3. spectroscopy for species measurements require use of **Curves of Growth!**

- Consider spectral absorption coefficient of the (0,0)Q₁(9) line in the OH A²Σ⁺-X²Π system, at line center.
 - $\lambda \sim 309.6$ nm, $\nu \sim 32300$ cm⁻¹, T = 2000 K, $\Delta \nu_{\rm C} = 0.05$ cm⁻¹

Express k_{ν} as a function of OH partial pressure

$$k_{v} \left[\text{cm}^{-1} \right] = 2.651 \times 10^{-2} \frac{\text{cm}^{2}}{\text{s}} \frac{P_{a}}{kT} \frac{N_{(n,v,\Sigma,J,\Lambda)^{"}}}{N_{a}} \frac{f_{J^{"}J}}{\mathbf{0}} \phi(v_{0}) \qquad N_{a} = P_{a} / kT$$

Oscillator strength (using tables)

$$f_{\mathcal{Q}_1(9)} = f_{v''v'} \frac{S_{J''J'}}{2J''+1} = 0.00096 \times 0.947 = 9.09 \times 10^{-4}$$

2 Lineshape factor (narrow-band)

$$\Delta \overline{\nu}_{D} (2000 \text{K}) = 0.25 \text{cm}^{-1} \\ \Delta \overline{\nu}_{C} (2000 \text{K}) = 0.05 \text{cm}^{-1} \\ e^{-10} \text{K} = 0.17 \implies \phi(\nu_{0}) = 3.13 \text{cm or } 1.04 \times 10^{-10} \text{s}$$

- Consider spectral absorption coefficient of the (0,0)Q₁(9) line in the OH A²Σ⁺-X²Π system, at line center.
 - $\lambda \sim 309.6$ nm, $\nu \sim 32300$ cm⁻¹, T = 2000 K, $\Delta \nu_{\rm C} = 0.05$ cm⁻¹

Express k_{ν} as a function of OH partial pressure

$$k_{v} \left[\text{cm}^{-1} \right] = 2.651 \times 10^{-2} \frac{\text{cm}^{2}}{\text{s}} \frac{P_{a}}{kT} \frac{N_{(n,v,\Sigma,J,\Lambda)''}}{N_{a}} \frac{f_{J''J}}{\mathbf{0}} \phi(v_{0}) \qquad N_{a} = P_{a} / kT$$

Opulation fraction in the absorbing state

$$\frac{N_{f_{1c}(0.5)}}{N_{a}} = \frac{\exp[-hcT_{e}(0)/kT]}{Q_{e}} \cdot \frac{\exp[-hcG(0)/kT]}{Q_{v}} \cdot \frac{(2J''+1)\exp[-hcF_{1}(9.5)/kT]}{Q_{r}}$$

$$= \frac{\exp(0)}{4} \cdot \frac{\exp[-2660K/T]}{0.287} \cdot \frac{20\exp[-2313K/T]}{T/26.66K}$$

$$= \frac{1}{4} \cdot \frac{0.264}{0.287} \cdot \frac{6.29}{75.0}$$

$$= 0.25 \cdot 0.920 \cdot 0.0839$$

$$= 0.0193$$

- Consider spectral absorption coefficient of the (0,0)Q₁(9) line in the OH A²Σ⁺-X²Π system, at line center.
 - $\lambda \sim 309.6$ nm, $\nu \sim 32300$ cm⁻¹, T = 2000K, $\Delta \nu_{\rm C} = 0.05$ cm⁻¹

Express k_{ν} as a function of OH partial pressure

$$k_{\nu} \left[\text{cm}^{-1} \right] = 2.651 \times 10^{-2} \frac{\text{cm}^{2}}{\text{s}} \frac{P_{a}}{kT} \frac{N_{(n,\nu,\Sigma,J,\Lambda)^{*}}}{N_{a}} \frac{f_{J^{*}J} \phi(\nu_{0})}{2} \qquad N_{a} = P_{a} / kT$$

$$\Rightarrow k_{\nu} \left[\text{cm}^{-1} \right] = \left(2.651 \times 10^{-2} \frac{\text{cm}^{2}}{\text{s}} \right) \left(P_{a} \left[\text{atm} \right] \right) \left(3.66 \times 10^{18} \frac{\text{cm}^{-3}}{\text{atm}} \right) \left(1.93\% \right) \left(9.09 \times 10^{-4} \right) \left(1.04 \times 10^{-10} \text{s} \right)$$

$$= 177 \frac{\text{cm}^{-1}}{\text{atm}} \left(P_{a} \left[\text{atm} \right] \right)$$

Beer's Law
$$I_v = I_v^0 \exp(-k_v L)$$

^{59%} absorption
for L = 5cm, X_{OH} = 1000ppm, T = 2000K, P = 1atm

Selected region of OH $A^2\Sigma^+ \leftarrow X^2\Pi$ (0,0) band at 2000K

Notes:

 Lines belonging to a specific branch are connected with dashed or dotted curve

 Thicker dashed lines – main branches; thin dotted lines – cross branches

 Bandhead in R branches if B_{v'}<B_{v"}; Bandhead in P branches if B_{v'}>B_{v"}

```
    Note bandhead in <sup>R</sup>Q<sub>21</sub>
branch
```

Next: TDLAS, Lasers and Fibers

- Fundamentals
- Applications to Aeropropulsion

Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 9: Tunable Diode Laser Absorption (TDLAS)

- 1. History and vision for aeropropulsion
- 2. Absorption fundamentals
- 3. Absorption sensor strategies
- 4. Wavelength access lasers/detectors
- 5. Example applications combustion
- 6. Example applications aerospace
- 7. Future trends for aerospace

Direct-connect scramjet combustor at UVa flow facility

The History of TDL Absorption for Aeropropulsion: 35 Years: From the Laboratory to Flight

- 1977 TDL absorption in shock tube flows and flames
- 1989 Mass flux sensor using O_2 absorption
- 1993 Multiplexed measurements of H_2O , T and momentum flux
- 1998 Combustion control (lab flames, incinerator)
- 2001 Multi-species in flames: CO, CO₂, NH₃, H₂O
- 1996-present Applications to flow facility characterization: arcjets, hypersonic flow tunnels, gas turbine engine sector rigs...
- 1998-present Applications for engine tests: scramjet combustors, commercial aircraft engines, ic-engines, pulse detonation engines, gas turbines, augmentors...

2012 – TDL absorption in scramjet flight tests

T/species in Shocktube

Hanson, Appl Opt (1977)

SCRAMJET @ WPAFB

Rieker, Proc Comb Inst (2009)

1. Vision for TDLAS Sensors for Aeropropulsion

Diode laser absorption sensors offer prospects for time-resolved, multiparameter, multi-location sensing for performance testing, model validation, feedback control

- > Sensors developed for T, V, H_2O , CO_2 , O_2 , & other species
- Prototypes tested and validated at Stanford
- Several successful demonstrations in ground test facilities
- Opportunities emerging for use in flight

Now for some absorption fundamentals

- Scanned-wavelength *line-of-sight* direct absorption
 - **Beer-Lambert relation** $T_{v} \equiv \frac{I_{t}}{I_{o}} = \exp(-k_{v} \cdot L) = \exp(-n_{i} \cdot \sigma_{v} \cdot L)$
 - Spectral absorption coefficient $k_{\nu} = S(T) \cdot \Phi(T, P, \chi_i) \cdot \chi_i \cdot P$

absorbance

2. Absorption Fundamentals: The Basics

Shifts & shape of Φ contain information (T,V,P,χ_i)

2. Absorption Fundamentals: The Basics

• T from ratio of absorption at two wavelengths

2. Absorption Fundamentals: Summary

- Wavelength multiplexing is also effective
 - To monitor multiple parameters or species
 - To assess non-uniformity along line-of-sight

Two primary strategies for absorption measurements

3. Absorption Sensor Strategies: Direct Absorption (DA) & Wavelength Modulation Spectroscopy (WMS)

- Direct absorption: Simple, if absorption is strong enough
- WMS: More sensitive especially for small signals (near zero baseline)
 - WMS with TDLs improves noise rejection
 - *Normalized WMS, e.g. 2f/1f* cancels scattering losses!

- Demonstrate normalized WMS-2f/1f in laboratory air
 - 2f/1f unchanged when beam attenuated (e.g., scattering losses)
 - 2f/1f unchanged when optical alignment is spoiled by vibration

WMS-2f/1f signals free of window fouling or particulate scattering What species/wavelengths can we access?

4. Wavelength Access: A Wide Range of Combustion Species/Applications using Wavelengths in the IR

- Small species such as NO, CO, CO₂, and H_2O have discrete rotational transitions in the vibrational bands
- Larger molecules, e.g., hydrocarbon fuels, have blended features
- Different strategies used to monitor discrete lines or blended absorption features

- Allows access to many atoms and molecules
- Visible and telecom TDLs can be fiber-coupled
- TDLs at wavelengths > telecom are emerging rapidly

Now lets consider hardware: lasers and detectors

4. Wavelength Access - Lasers

Sources – <u>Semiconductor lasers</u>

- Available from the near UV (375 nm) to the far-IR (~ 11 μm)
 - Power: ~ 1 to 500 mW
 - Low power restricts their application to absorption experiments
- Near-IR lasers are compact, rugged, and fiber-coupled
- DFB lasers can be rapidly tuned over several wavenumbers by changing the injection current or laser temperature
 - External cavity diode lasers can be tuned more than 100 cm⁻¹

Diode lasers, near- to extended-near-IR (\$1000 - \$6000) Fiber-coupled up to 2.3µm

QC lasers, mid-IR (~\$40,000)
4. Wavelength Access - Detectors

- Detectors <u>Photodiode/Photovoltaic detectors</u>
 - A photodiode is a semiconductor that generates voltage or current when light is incident on it
 - Like photoconductors, they have a minimum photon energy associated with the bandgap energy of the semiconductor
 - Source of noise: Johnson noise (not shot-noise limited)
 - A variation is avalanche photodiode, signal (volts) = constant x intensity

Detector material	λ [µm]
Si	0.2 – 1.1
Ge	0.4 – 1.8
InAs	1.0 – 3.8
InSb	1.0 - 7.0
InSb (77K)	1.0 – 5.6
HgCdTe (77K)	1.0 – 25.0

4. Wavelength Access - Detectors

- Detectors <u>Select a detector</u>
 - Criteria: wavelength, time response, noise, simplicity, cost ...

Wavelength

Bandwidth

- Frequency bandwidth is important for time-resolved measurements
- Bandwidth depends on the detector area, material, temperature, and preamplifier gain

4. Wavelength Access - Detectors

- Detectors <u>Select a detector</u>
 - Detector noise is characterized by the detectivity, D*

$$D^* = \frac{\sqrt{A_{\text{Detector}}\Delta f}}{\text{NEP}}$$

- Δf = bandwidth
- NEP = noise equivalent power: the amount of the optical power required to equal the magnitude of the detector noise
- D* is improved at lower temperatures (cooling)
- The signal-to-noise ratio (SNR) for a measurement dominated by the detector noise can be calculated using:

$$SNR = \frac{P_{\text{incident}}}{NEP} = \frac{P_{\text{incident}}D^*}{\sqrt{A_{\text{Detector}}\Delta f}}$$

- Cost and complexity are also important considerations
- Spatially uniform responsivity is also important
 - Smaller and cooled detectors are more uniform

5. Example TDL Applications – Combustion

- 1. Extended NIR provides stronger CO₂ absorption
- 2. Exploit strong CO_2 absorption near 2.7µm for precision T
- 3. Exploit 1f-normalized WMS-2f for T with aerosol present

5.1 CO₂, T Sensor Using Extended-NIR Extended NIR Enables Large Increase in Sensitivity

- Access to CO_2 enabled by new DFB lasers for λ >2.5 μ m
- The band strength near 2.7 μ m is orders of magnitude stronger than NIR

Many candidate transitions for optimum line pair (depending on T)
Next: Line selection in 2v₂+v₃ band

5.1 Extended-NIR Sensor for CO₂, T

Strategy: Sense T by ratio of absorption by two CO₂ transitions

- A near optimum line pair R(28) and P(70) selected
 - Strong, isolated from H₂O, wide separation in E"

Validate in shock tube to demonstrate achievable precision

Ratio of WMS-2f signals sensitive to temperature

Next: Measured accuracy and precision

5.2 Shock-Tube Validation of Extended NIR CO₂, T Sensor Temperature vs Time in Shock-Heated Ar/CO₂ Mixtures

- Temperature data agree with T₅ determined from ideal shock relations
- Temperature precision of ±3 K demonstrated!
- Unique capability for real-time monitoring of T in reactive flows

Next: High potential for multi-phase flows, e.g., droplet evaporation

5.3 1f-Normalized WMS-2f for CO₂ with Scattering Validate in Aerosol-Laden Gases

Aerosol shock tube experiment: 2% CO₂/Ar in n-dodecane aerosol
L=10 cm, P₂=0.5 atm; P₅=1.5 atm

2f/1f TDL sensor successfully measures T in presence of aerosol!
Next example: Detection of gasoline in IC-engines

6. Example TDL Applications - Aerospace

- 1. Subsonic velocity in a laboratory wind tunnel $@SU ambient H_2O$
- 2. Supersonic velocity in a test facility @NASA H_2O from vitiation
- 3. Supersonic combustion @UVa
 - Exploit mid-IR absorption for strong signals
 - H₂O, CO, and CO₂ measurements to compare with CFD
 - Scramjet unstart monitor

- TDL sensor of mass flux based on H₂O absorption
- Velocity from Doppler shift of absorption wavelength
- Validate sensor in subsonic wind tunnel w/ ambient H₂O @ Stanford
- 0.5 m/s precision for V in uniform subsonic flow

Next: Test in supersonic-flow facilities at NASA Langley

- **DCSCTF:** Simulates atmospheric supersonic and hypersonic flight conditions
- M=2.65 nozzle with T_{static}~ 990K and P_{static}~ 0.7 atm; simulates M=5 flight
 - Add optical access to isolator
 - Measure V, T, mass flux

6.2 Supersonic Velocity @NASA via TDLAS

Supersonic test facility at NASA Langley (2009)

Upstream Translating window sensor

Downstream window

Sensor translates to probe vertical and horizontal planes

6.2 Supersonic Velocity @NASA via TDLAS

Supersonic test facility at NASA Langley (2009)

Sensor translates to probe vertical and horizontal planes

6.2 Supersonic Velocity @NASA via TDLAS

Supersonic test facility at NASA Langley (2009)

- Sensor translates to probe vertical and horizontal planes
- Fast sensor captures start-up transients in V and T

Next: A supersonic combusting flow @ UVa

6.3 Mid-IR absorption sensing in scramjet flows

Goal: Spatially-resolved CO, CO₂ and H₂O in supersonic combustion

Mach 5 flight condition Mach 2 in combustor $C_2H_4/Air, \phi \approx 0.15$

UVa Supersonic Combustion Facility Charlottesville, VA

6.3 Mid-IR absorption sensing in scramjet flows Optical Setup: Translating LOS

First use of fiber-coupled Mid-IR for aero-applications

6.3 Mid-IR absorption sensing in scramjet flows Time-resolved CO and T Measurements

UVa Combustor

 C_2H_4 + Air: $\phi \approx 0.15$

TDL sensor captures flow fluctuations

6.3 Mid-IR absorption sensing in scramjet flows Comparison of TDL Data with CFD (NCSU)

UVa Combustor C_2H_4 + Air: $\phi \approx 0.15$ 1 5

Measured and CFD CO₂ in good agreement

6.3 Mid-IR absorption sensing in scramjet flows Comparison of TDL Data with CFD (NCSU)

CFD overpredicts CO in cavity

6.4 Scramjet Unstart Monitor Example: Fluctuations in T Uniformity via TDLAS

- Simultaneous measurements on 4 H₂O lines
 - Two lines for T_{low} and two lines for T_{high}

6.4 Scramjet Unstart Monitor Sensor Monitors Time-Resolved T_{low} vs T_{high}

- T_{low} ≠ T_{high} indicates temperature is not uniform
- Low-frequency fluctuations anticipate inlet unstart
- Fluctuation sensing : A new paradigm for control!

7. Future trends for TDLs Sensing

- <u>Portable</u> TDL-based aerospace sensors useful for T, V, species and mass flux over wide range of conditions, facilities
- <u>Robust</u> TDL-based sensors for long term monitoring of energy systems
- Current and future topics:
 - Characterization/maintenance/control of facilities/emissions
 - Emerging applications in flight systems
 - Extension to UV and mid-IR to access new species

 \rightarrow CO, CO₂, HC's, radicals, NO, NO₂

Research in advanced energy and propulsion concepts

Next Lecture

TDLAS Applications to Energy Conversion

- 1. Fuel in IC engines fuel and T
- 2. H_2O and T in slagging coal gasifier
- 3. H_2O in NCCC coal gasifier
- 4. NO and CO in coal-fired boiler exhaust

Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 10: TDLAS Applications to Energy Conversion

- 1. Introduction
- 2. Fuel in IC engines fuel and T
 - Absorption cross section vs gasoline blend
- 3. H₂O and T in slagging coal gasifier
- 4. H₂O in transfer coal gasifier
- 5. NO and CO in coal-fired boiler exhaust
- 6. Future trends energy conversion

Transport coal gasifier at the National Carbon Capture Center Wilsonville, AL

1. Introduction: TDLAS is Practical in Harsh Environments

- Utilizes economical, robust and portable TDL light.sources and fiber optics
- Can yield multiple properties: species, T, P, V, & m in real-time over wide conditions
 - T to 8000K, P to 50 atm, V to 15km/sec, multiphase flows, overcoming strong emission, scattering, vibration, and electrical interference
- Demonstrated in harsh environments and large-scale systems:
 - Aero-engine inlets, scramjets, pulse detonation engines, IC engines, arcjets, gas turbines, shock tunnels, coal-fired combustors, rocket motors, furnaces....
- Potential use in control of practical energy systems

Coal-fired Utility Boiler

Chao, Proc Comb Inst, 2011

IC-Engines @ Nissan

Jeffries, SAE J. Eng, 2010

Coal Gasifier @ U of Utah

Jeffries, Pittsburgh Coal Conf, 2011

2. Fuel and T Sensing in IC Engines w/ TDLAS

2. Fuel and T Sensing in IC Engines w/ TDLAS Gasoline has Unstructured Absorption & Many Blends

- Absorption spectrum measured with FTIR
- Strongest absorption in region of C-H stretching vibration

2. Fuel and T Sensing in IC Engines w/ TDLAS Gasoline Absorption Varies with Temperature

- Absorption cross section versus temperature measured with FTIR
- Strongest absorption in region of C-H stretching vibration
- Pick one laser frequency (v_1) with large T dependence
- Pick one laser frequency (v_2) with small T dependence
 - Determine temperature from absorption ratio of selected frequencies

2. Fuel and T Sensing in IC Engines w/ TDLAS Gasoline Absorption Varies with Blend

Measured (FTIR) absorption cross section varies with blend

2. Fuel and T Sensing in IC Engines w/ TDLAS Stanford Model of Gasoline Absorption Cross Section

$$\overline{\sigma}_{\text{model}}(\lambda,T) = \sum_{j=1}^{5} X_{j} \sigma_{j}(\lambda,T)$$

- Gasoline absorption cross section model:
 - Determine composition of gasoline blend by hydrocarbon class
 - Fractions of paraffin, olefin, aromatics, and oxygenate from standard tests (ASTM D1319 & ASTM D4815)
 - Assume oxygenates are ethanol
 - Normal- and iso-paraffin fraction based on fuel grade
 - Determine absorption cross section $\sigma_i(\lambda, T)$ for hydrocarbon class
 - Empirical database (see Klingbeil et al., Fuel 87(2008)3600)
 - Weighted sum of σ_i by mole fraction X_i of each hydrocarbon class
- Absolute measurements without calibration using this cross section

2. Fuel and T Sensing in IC Engines w/ TDLAS Cross Section Model Validation Experiments

21 Gasoline samples measured (sample collection augmented by Chevron)

- Sample pool covers expected range of gasoline compositions
- Composition variation in cross section larger than x2 at target v₁ & v₂
- FTIR measured cross sections in good agreement with model predictions

2. Fuel and T Sensing in IC Engines w/ TDLAS Gasoline Sensor Needs 3-Color Laser

- Difference frequency of two near-IR lasers for mid-IR outputs
 - Third near-IR laser provides two mid-IR outputs
- Two Mid-IR colors for simultaneous fuel and T
- NIR color can be used to identify liquid droplets of fuel

2. Fuel and T Sensing in IC Engines w/ TDLAS Optical Access Key to In-cylinder Fuel Measurements

SU, Nissan, PSI collaborative project (2003-2008)

Measure fuel vs time (CA) close to spark ignition

2. Fuel and T Sensing in IC Engines w/ TDLAS Crank-Angle-Resolved Gasoline Absorption

• Single-cycle data from production engine

- High-quality, low-noise data for entire cycle
- Sensor provides cycle-by-cycle statistics of F/A ratio
 - Critical for understanding/controlling UHC emissions

Jeffries et al., SAE International Journal of Engines, 2010

2. Fuel and T Sensing in IC Engines w/ TDLAS Cold Start Fluctuations Critical for Emissions Control

Peak fuel at ignition for 400 cold start cycles

- High-resolution data quantifies changes in fuel loading
- Provides new tool to optimize MPI & DIG engines

Part 3: Sensors to optimize coal gasification
3. H₂O & T in Slagging Coal Gasifier @ Utah Vision for TDLAS Sensing in IGCC

Vision: Sensor for control signals to optimize gasifier output and gas turbine input

- Two flow parameters considered: gas temperature and syngas energy
 - Gas temperature determined by ratio of H₂O measurements
 - For O₂ blown systems CO, CH₄, CO₂, and H₂O provide syngas energy
 - Where H₂ can be determined by gas balance
- Four measurement stations considered: spanning reactor core to products

3. H₂O & T in Slagging Coal Gasifier @ Utah

Entrained flow gasifier @ Utah

Sensor locations

- 1: Reactor Core
 - T: 1300K-1700K
- 2: Quench T: 600K-1000K
- 3: Post-quench T: 330K-400K

Pressure range investigated: 50psig to 200psig

- Measurement locations 1 and 2 provide opportunity for control
 - Temperature sensing by ratio of H₂O absorption lines
- Measurement location 3 monitors syngas heating value
 - Monitor CO, H₂O, CO₂, CH₄, and assume balance H₂

3. H₂O & T in Slagging Coal Gasifier @ Utah Challenge: Absorption Broadened by Pressure

Practical combustion devices often operate at elevated pressures

- Pressure broadening
 - Blends nearby transitions
 - Eliminates the baseline between transitions
- Particulate in the synthesis gas attenuates laser transmission
- Solution: 1f-normalized WMS: accounts for varying transmission

3. H₂O & T in Slagging Coal Gasifier @ Utah Transmission loss by particulate scattering

- Reactor loading, throughput, and efficiency increase with pressure
- Particulate loading also increases with pressure
- Scattering losses severely reduce laser transmission

Solution: 1f-normalized wavelength-modulation spectroscopy (WMS 2f/1f)

3. H₂O & T in Slagging Coal Gasifier @ Utah TDLAS Temperature in Reactor Core

Two H₂O transitions: 7426cm⁻¹, E"~1300cm⁻¹, f = 13kHz 7466cm⁻¹, E"~2660cm⁻¹, f = 10kHz

Laser beam alignment @Utah – no access during experiments

- Normalization scheme successful with low transmission (< 0.02%)</p>
- Fluctuations in T reveal unsteadiness in reactor core

3. H₂O & T in Slagging Coal Gasifier @ Utah CO and CO₂ vs Time in Syngas Output

- Monitor composition of syngas output at location 3
 - Simultaneous measurements of CO, CH₄, CO₂, and H₂O
- Coal/O₂ feed rates varied changes CO & CO₂ values during final 30 minutes
- GC data adjusted to account for ~4 min sampling/drying delay
 - TDL data in good agreement with GC

3. H₂O & T in Slagging Coal Gasifier @ Utah CH₄ and H₂O vs Time in Syngas Output

CH₄ measurements

H₂O measurements

Monitor composition of syngas output at location 3

- Simultaneous measurements of CO, CH₄, CO₂, and H₂O
- CH₄ added to syngas to test sensor response during first 30 minutes
- GC data adjusted to account for ~4 min sampling/drying delay
 - TDL data in good agreement with GC
 Part 4: Extend to industrial-scale gasifier

4. H₂O in Transfer Coal Gasifier @NCCC Large-Scale DoE Demonstration Facility

NCCC transport gasifier based on a circulating fluidized bed concept
 <u>Goal:</u>

Laser absorption in situ measurements of moisture and temperature of syngas

4. H₂O in Transfer Coal Gasifier @NCCC TDL Sensor Located Downstream of PCD

Syngas output

- TDL sensor monitors syngas flow 99 feet downstream of the PCD
- Small (0.01%) transmission due to beam steering & scattering from ash

4. H₂O in Transfer Coal Gasifier @NCCC Laser Sensor Installed on Syngas Output Flow

- Safety a paramount element of engineering design
 - Redundant shut-off valves to isolate laser sensor
 - Redundant sapphire windows with P/T failure sensor
- Transmitter and receiver mounted on rail hung from process pipe to minimize thermal motion from process/weather

4. H₂O in Transfer Coal Gasifier @NCCC Laser Sensor Installed on Syngas Output Flow

Photo illustrates the large-scale of this commercial size system

Now let's look at sensor measurements during start-up

4. H₂O in Transfer Coal Gasifier @NCCC Time-Resolved TDLAS During Gasifier Start-up

- In situ measurements of syngas moisture content capture start-up events
 - Propane heater ignition (H₂O combustion products) and warm-up
 - TDLAS of H₂O captures pulsing of coal feeder to control warm-up rate of the rig
 - Transition to gasification
- TDL sensor captures a shut-down at 54 hours

4. H₂O in Transfer Coal Gasifier @NCCC TDL Sensor Captures Transient in Gasifier Reactor

- Syngas temperature stable in agreement with post PCD TC's
- Time-resolved syngas moisture identifies transient and fluctuations

4. H₂O in Transfer Coal Gasifier @NCCC TDL Sensor Captures Transient in Gasifier Reactor

- Syngas temperature stable in agreement with post PCD TC's
- Time-resolved syngas moisture identifies transient and fluctuations
- Transient and fluctuations track the gasifier reactor TC

4. H₂O in Transfer Coal Gasifier @NCCC Continuous Time-Resolved Unattended TDLAS

- Unattended operation yields continuous record of H₂O
- Values closed 3 times during run due to reactor upset not related to TDL
- Light transmission stable over entire campaign (depends on P)
 - No degradation of window transmission or laser performance

4. H₂O in Transfer Coal Gasifier @NCCC TDL H₂O Compared to Liquid H₂O Samples

- Liquid H₂O samples taken from syngas every day or two
- TDLAS data in good agreement with samples

Can Sensor reveal real-time moisture fluctuations?

4. H₂O in Transfer Coal Gasifier @NCCC Syngas H₂O Fluctuations Capture Reactor Conditions

• H_2O fluctuation tracks the reactor thermocouple (note small ΔT)

Part 5: Measurements of NO and CO at exit of powerplant boiler

5. NO and CO in Coal-Fired Boiler Exhaust

Xing Chao, 2009/10

5. NO and CO in Coal-Fired Boiler Exhaust Emissions Sensing in Coal-Fired Powerplants

• *In situ* CO and NO measurements at economizer exit of pulverized coal boiler for characterization of SNCR

5. NO and CO in Coal-Fired Boiler Exhaust Interference Absorption and Scattering Attenuation

Measurement of other species must consider H₂O interference

- Several candidate CO lines found that are free of H₂O interference
- Two good candidate NO lines are found relatively free of interference
- Particulate in the flow (flyash, soot, etc) attenuates the beam, but Stanford's 2f/1f approach resolves the problem

Utilizes 5.2μm QC for NO and 2.3μm TDL for CO

Dusty environment results in large scattering losses

50-90% of incident light scattered

5. NO and CO in Coal-Fired Boiler Exhaust CO Sensing with 2.3 μm DFB Laser

Continuous monitoring of CO with varying excess air

- Correlates with excess air as expected
- Sensitive (ppm) time-resolved CO detection
- In situ sensor avoids delay/mixing of stack CEM

Chao et al., Proc Combustion Institute, 2011

5. NO and CO in Coal-Fired Boiler Exhaust NO Sensing with 5.2 μ m QC Laser

- Sensitive (ppm) time-resolved NO detection
- In situ sensor avoids delay/mixing of stack CEM
- Potential for control of individual boilers

6. TDLAS for Energy Conversion – Future Trends

- <u>Portable</u> TDL-based sensors useful for T, V, species and mass flux over wide range of conditions, industries
- Potential use as control variables for combustion emissions/efficiency
- Potential use for compliance monitoring of pollutant emissions
- Current and future topics:
 - Extension to UV and mid-IR to access new species \rightarrow CO, CO₂, HC's, radicals, NO, NO₂
 - Advanced energy utilization: bio-fuels, gasification, liquifying natural gas

Next Lecture

Shock tubes and applications to combustion kinetics