
Where to find the city of Darmstadt?

100

SCHECHIEN

Wissenschaftsstadt

Darmstadt

Source: thinkstock

Andreas Dreizler | Tsinghua University Beijing | 1

TU Darmstadt in numbers

Students	~25,000
Professors	~300
Research associates	~2,150
Administrative and technical employees	~1,750

One focus: "energy conversion"

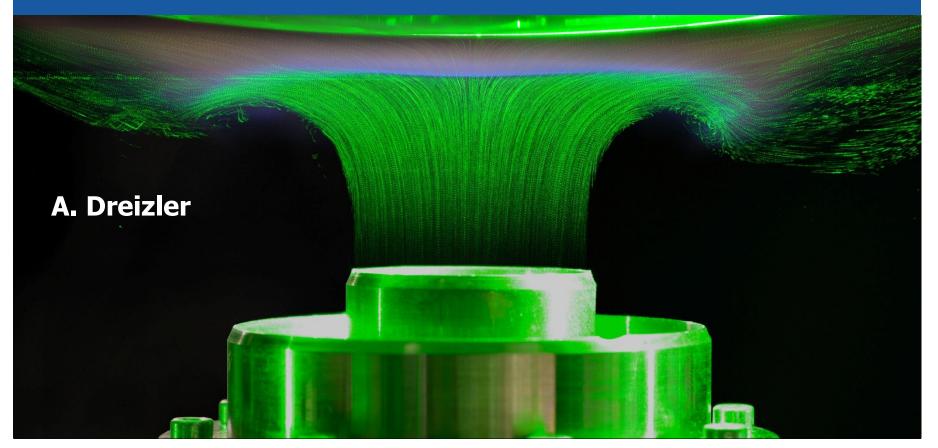
Engineering	~50%
Natural Sciences	~35%
Social Sciences	~15%

TU Darmstadt: Dept. of Mechanical Engineering

Students	~3,000
Professors/institutes	28
Research associates	>400
Third party funding (2018)	46 Mio €

Institute Reactive Flows and Diagnostics http://www.rsm.tu-darmstadt.de/rsm/index.en.jsp

- Prof. Dreizler (director),
- Prof. Votsmeier, Prof. Bauer
- Dr. Böhm, Dr. Wagner
- 22 Research associates (Ph.D.)
- 9 technical and administrative staff
- Third party funding in 2018 ~3 Mio €/a
- \rightarrow Focus on Turbulent Combustion
- \rightarrow Advanced Laser Diagnostics


Advanced Laser Diagnostics in Combustion

TU Darmstadt, Germany Dept. of Mechanical Engineering Institute for Reactive Flows and Diagnostics

TECHNISCHE

UNIVERSITÄT DARMSTADT

Andreas Dreizler | 4

Challenges in combustion research

Jan

Feb

Mrz

Apr

Mai

Jun

Jul

Date

Aug

Sep


Okt

Nov

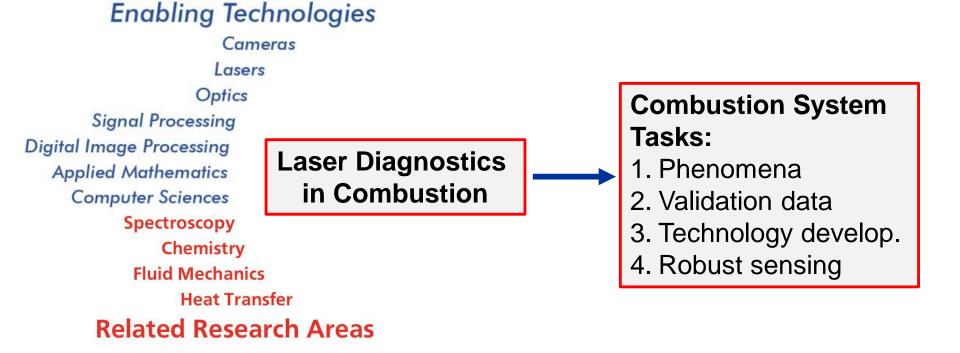
Dez

Jan

Andreas Dreizler | 5

Challenges in combustion research

- → Need for efficient, clean and flexible combustion technology
- → Coherent action of combustion-community: experiments, theory/modeling and simulation
- \rightarrow Objective of this lecture series:
 - Highlight role of combustion diagnostics
 - Provide some basics of light matter interaction
 - Discussion of most important laser combustion diagnostic methods
 - Present some topical application examples



Content

- Introduction
- Benchmark experiments
- General requirements for laser combustion diagnostics
- Particle-based velocimetry
- Gas-phase thermometry
- Surface thermometry
- Gas-phase concentration measurements
- Towards 4D-imaging
- Application examples
 - Flame-wall interactions in canonical configurations
 - Effusion cooling in gas turbine combustor
 - IC Engine: Technology development

Introduction Laser diagnostics: contributions and context

TECHNISCHE UNIVERSITÄT

DARMSTADT

Quantities of primary interest in combustion

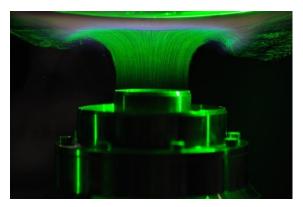
• Flow field

- Mean velocities, fluctuations, Reynold-stresses
- Strain, dilatation, vorticity
- Integral length and time scales
- Power spectral densities

Scalar field

- Means and fluctuation of temperature and chemical species concentrations
- Structural information based on 2D- or quasi 3D-diagnostics
- Scalar gradients
- Wall/ nozzle temperatures
- Inflow conditions, boundary conditions
- Information on **unsteadiness**, temporal sequences of flow/ scalar fields

Using light – matter interaction for diagnostics

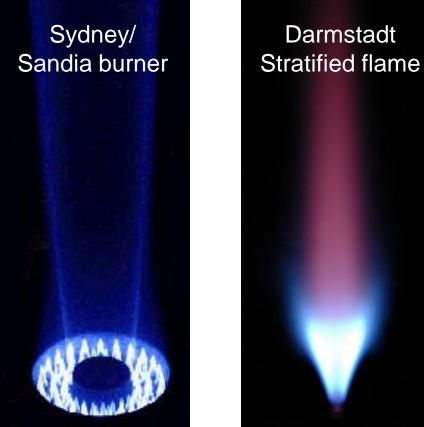

Methods from physics

Engineering sciences

Transfer of methods

- Measuring by laser light
- Insitu-diagnostics → measuring inside combustors
- Non- or minimal intrusive
- High temporal resolution (~10⁻⁸s)
- Reasonable spatial resolution (>10µm)

Laser diagnostic methods


- Flow field
 - Laser Doppler Velocimetry (LDV), 1 to 3 components
 - Particle Image Velocimetry (10 Hz 30 kHz)
 - 2 dimensional and 2 components (2D2C)
 - 2 dimensional and 3 components (2D3C stereo PIV)
 - 3 dimensional and 3 components (3D3C tomographic PIV)
- Two-phase flows
 - Mie scattering
 - Phase Doppler Anemometry (PDA)
- Scalar field
 - Mie scattering
 - Laser absorption spectroscopy (LAS) but line-of-sight
 - Planar Laser-Induced Fluorescence (PLIF)
 - 1D Raman/Rayleigh scattering
 - Coherent anti-Stokes Raman Spectroscopy (CARS)
 - Thermographic Phosphors (TG)

Towards complex combustion systems

Laser diagnostic methods have been used primarily in unconfined
gaseous flames

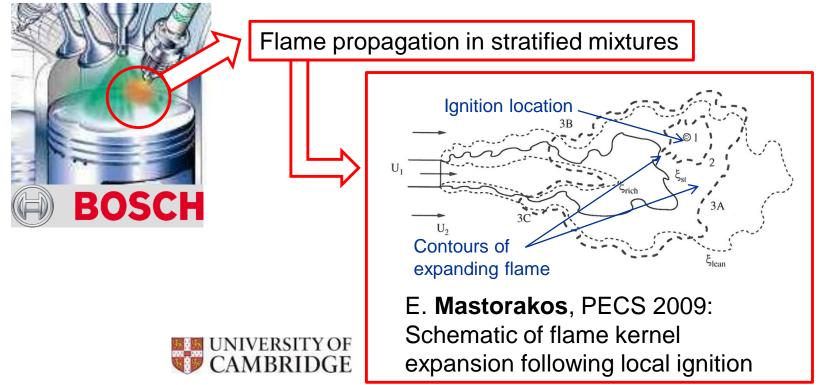
Towards complex combustion systems

- Laser diagnostic methods have been used primarily in unconfined gaseous flames
- Additional challenges in practical combustion systems
 - Enclosure, high pressure \rightarrow optical access
 - High turbulence levels \rightarrow small length scales

Towards complex combustion systems

- Laser diagnostic methods have been used primarily in unconfined gaseous flames
- Additional challenges in practical combustion systems
 - Enclosure, high pressure \rightarrow optical access
 - High turbulence levels \rightarrow small length scales

Multiphase systems Coal and solid fuel particles
 Walls

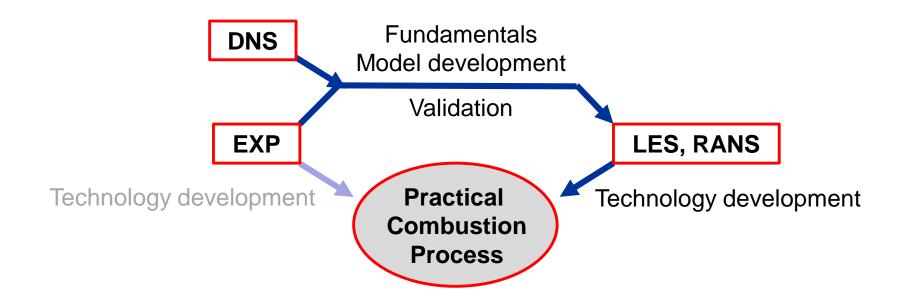

 Complex fuels → spectral interferences, unknown spectroscopic properties, sooty, high optical densities, …

Task 1: Studying phenomena by laser diagnostics

 Mimic specific properties of practical combustion systems in canonical configurations

Mastorakos. PECS (2009) 35:57-97

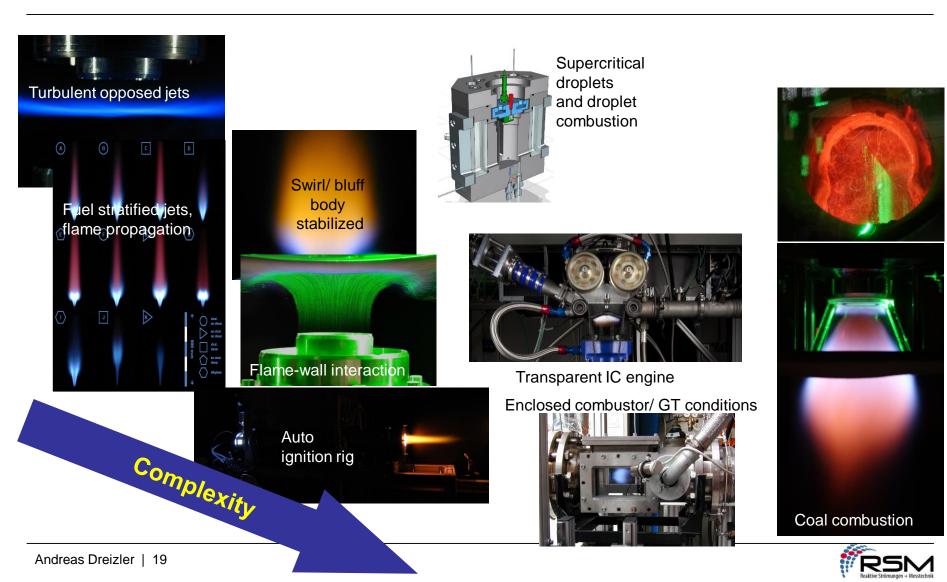
Task 1: Studying phenomena by laser diagnostics


- Mimic specific properties of practical combustion systems in canonical configurations
- Adapt/develop laser diagnostics for monitoring of a specific property
- Exploit rapid developments in laser and camera technology to break new ground
 - From single-parameter to multi-parameter diagnostics
 - From 0-D towards 3-D measurements
 - From statistical independent measurements at low sampling rates towards high-speed diagnostics for statistically correlated measurements
- → Ultimate goal: summarize phenomenological understanding in physically consistent and predictive mathematical models

Task 2: Provide validation data

• Interplay of experimental and numerical methods for developing future combustion technologies

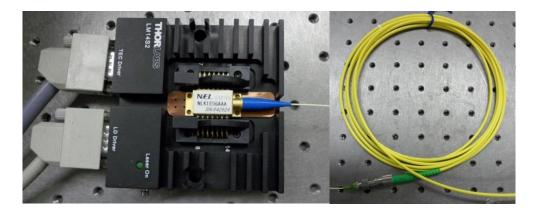
Task 2: Provide validation data

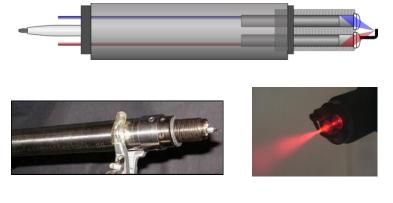


- Validation sequence: from simple to complex
 - Stepwise approach: select specific sub-processes and build experiment to develop and validate models for this specific subprocess
 - Example:
 - Turbulence-chemistry interaction
 - Soot formation
 - Spray breakup
 - ...

Task 2: Provide validation data - from simple to complex, strategy at TUD

Task 3: Support technology development


- Development of future combustion technology requires billions of Euro (IC engine, gas turbine combustor, coal power plant, rocket motor, ...)
- \rightarrow Not the core-business of universities
- University task: development of methods (experimental, theoretical, numerical) supporting technology development and educate well-trained engineers
- \rightarrow In this context: Transfer of measurement methods to industry
 - By graduated students
 - Bilateral industry projects



Task 4: Develop robust sensors

- Reliable components and easy operation without special training
- Applicable to real-world combustion systems
- → Fiber-based optical sensors in combination with (direct) absorption spectroscopy

DFB-diode laser, mounted

Glass fiber SMF-28

Fiber-coupled spark plug sensor

