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Cellular detonations



Lecture 15 : Cellular detonations

15-1. Cellular detonations at strong overdrive

15-2. Cellular instability near the CJ condition

Order of magnitude. Scaling
Formulation
Outer flow in the burnt gas
Inner structure
Matching
Linear growth rate
Weakly nonlinear analysis

Formulation
Scaling
Model for CJ or near CJ regimes
Multidimensional stability analysis
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XV-1) Cellular detonations at strong overdrive

�2 �M
2
N � 1, M

2
u = O(1/�2), (� � 1) = O(�2)

Same limit as in § XII-3
Overdriven detonations in the Newtonian approximation

Fresh mixture
x = �(t, y)

x

y

Shocked gas
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e
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Longitudinal oscillation

longitudinal oscillation of the complex shock reaction zone

Underlying linear mechanisms see p4 lecture XIV

transverse oscillatory mode of the lead shock

Clavin et al (1997)

period of oscillation: tN � �r(TN )
transverse velocity of the shock disturbances: aN

�see pp 4-8 lecture XII

see pp 7-8 lecture XIV

Order of magnitude and scaling
Clavin Denet (2002) Daou Clavin (2003)

qN � qm/cpTN Always unstable to transverse disturbancesqN = O(1) �
Clavin et al (1997)

instantaneous shock position

y � (� y/dN , � z/dN )

x = �(y, z, t)

x � 1
�uDtN

� x

�
�(x�, y, z, t)dx� t � t

tN

Reduced mass-weighted coordinates of order unity (generalization of p 4 lecture XII)

The unstable wavelengths are much larger than the detonation thickness

MN = uN/aN

� wavelength of unstable disturbance aN tN = dN/�
detonation thickness dN = uN tN (see p 11 lecture X )

tN � �r(TN )
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Non-dimensional variables of order unity
denoting ŵ the original dimensional quantities and w the dimensionless quantity

where the scaling of the transverse velocity v̂ comes from the Rankine-Hugoniot condition
v̂N/uN � (��̂/�y, ��̂/�z) and the scaling of the transverse coordinates �/�y = �d�1

N �/�y, �/�z = �d�1
N �/�z

u � û/uN , v � �v̂/uN , p � p̂/pN , T � T̂ /TN and � � �̂/dN , dN � uN tN !
notations

Stability limit qN = O(�2)qN � qm/cpTN

x = 0 : �u �
�
1 +

1
M2

u

� (� � 1)
2

�
�̇t, v �

�
1� 1

M2
u

�
��, �p � �2�2�̇t, �TN � �(� � 1)�̇t

Rankine-Hugoniot conditions �̇t � (tN/dN )��̂/�t = u�1
N ��̂/�t = O(1)

�2
��

�

�t
+

�

�x

�
�u� �

du

dx

�
= ���p

�x

�
�

�t
+

�

�x

�
(�.v) = �u�2�p

1
�

u

p

�
�

�t
+

�

�x

�
�p +

�

�x
(�u + u�) = qN (�ẇ + �ẇ),

Linear equations

�Nu2
N/pN = �2

qN = �2q2

u = 1 + �2u2(x) + �u T = 1 + �2T 2(x) + �T p = 1 + �4p4 + �p

Expansion in powers of �2

qN = �2q2

Formulation

!
notations

� �r

�t
+ m(t)

�r

�x
=

�

�x
[u + r(x)�(x,y, t)] where r(x,y, t) � �N/�̂(in the linear approximation)

continuity

uN/D = O(�2) � m(t) = 1 + O(�2)
Clavin Denet (2002) Daou Clavin (2003)

(Clavin et al. 1997, Clavin 2002)

!
change of variabley � (� y/dN , � z/dN ) t � t

tN

(y,z,t)
x � 1

�NuN tN

� x

�
�(x�, y, z, t)dx�

�
m(t) � 1� (��̂/�t̂)/Dwhere

D
Dt

=
�

�t
+ [m(t)� �(x,y, t)]

�

�x
�(x,y, t) �

� x

0
�.v dx� = O(1)y �.v = O(1)yv(t,y)

and

+v.�y

m(t)�
1 + |��|2 mass flux across

the leading shock
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� = �̃ exp(�t + i�.y)

qN = O(�2) � �

ub

ub

ub

ub

acoustic wave
in the burnt gas

vorticity wave

burnt gas

x

y

�

�

�
1
�

ub

pb

�
d
dx

+ �

�2

� 1
�2

d2

dx2
+ u2

b�
2

�
p̃(x) = 0D2

Dt2
�p� a2

N

�
�2

�x2
+

�2

�y2

�
�p = 0 �

� = �0 + �2�2 + ...

Order unity
x = 0 : �u � �̇t, v � �� �

Vorticity wave
valid up to �2 in the burnt gas
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��u(i)
0 /�x +�.v(i)

0 = 0 � �2�/�t2 ��2� = 0, �0 = ±i� the growth or damping rate is small of order �2

Continuity

�2?

� �2 � (ub/�pb)�
2 � �2il =

�2� ± �
�

�2 + �2 � �2�2

1� �2

�2 � (�ubpb)�
2 � �2 + �2(h + q2)�2 + .. where qN � �2q2

(� � 1) � �2hp̃(x) = p̃b�̃eilx

�f(x,y, t) = f̃(x)�̃ exp(�t + i�.y)

where qN � �2q2 (� � 1) � �2hil2 � �0 �
�

2�0�2 + (h + q2 � 1) �2
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valid up to �2 in the burnt gas

ũ(i) =
�
�0 + �2ũ(i)

b2

�
e��x �.ṽ(i) =

�
��2 + �2�.ṽ(i)

b2

�
e��x

Outer flow

�0 = ±i�

�u = ũ(x)�̃e�t+i�.y �v = ṽ(x)�̃e�t+i�.y
�(y, t) = �̃e�t+i�.y �p = p̃(x)�̃e�t+i�.y

1
�

u

p

�
�

�t
+

�

�x

�
�p +

�

�x
(�u + u�) = qN (�ẇ + �ẇ), �

valid up to �2
subtracting out the acoustics

d
dx

�
Ũ (i) + u(x)�̃(i)(x)

�
� qN

�
˜̇w + �̃(i)

0 ẇ
�

�̃(i) �
� x

0
�.Ṽ(i)dx�

qN = �2q2

du/dx = qN ẇ � dŨ (i)/dx + u�.Ṽ(i) � qN
˜̇w

�2?

�.ṽ(i)
b2 = �0ũ

(i)
b2

unknown constants of integration

(burnt gas)

�
�

�t
+

�

�x

�
(�.v) = �u�2�p

subtracting out the acoustics

� (�/�t + �/�x)�.V(i) � 0 valid up to �2

Inner flow

Inner detonation structure (inner zone)

splitting Ũ (i)(x) = O(1) Ṽ(i)(x) = O(1)ũ � Ũ (i)(x) + ũ(a)(�2x) ṽ � Ṽ(i)(x) + ṽ(a)(�2x)

(reacting gas)

the acoustic flow is small, of order �2, and varies on a long length scale

ũ(a) = 2�2il2ei�2l2x �.ṽ(a) = �2�2�2ei�2l2xp̃(�2x) = �2�2�ei�2l2x �
the acoustic flow is of order �2 il2 � �0 �

�
2�0�2 + (h + q2 � 1) �2

x = 0 : �u �
�
1 +

1
M2

u

� (� � 1)
2

�
�̇t ũ(a) = 2�2il2 � Ũ (i)(x)�

�
1 +

1
M2

U

� � � 1
2

�
� + 2�2il2 + u(x)

� x

0
�.Ṽ(i)dx� �

qN

� x

0

�
˜̇w + �̃(i)

0 ẇ
�

dx�

x = 0 : v �
�
1� 1

M2
u

�
�� �.ṽ(a) = �2�2�2 � �.Ṽ(i) �

�
�1 + �2

�
2 +

1
�2M2

u

��
�2e��x valid up to �2

Rankine-Hugoniot see p.6 lecture X and p.6 lecture XIII



Ũ (i)(x)�
�
1 +

1
M2

U

� � � 1
2

�
� + 2�2il2 + u(x)

� x

0
�.Ṽ(i)dx� � qN

� x

0

�
˜̇w + �̃(i)

0 ẇ
�

dx�

��.Ṽ(i) �
�
�1 + �2

�
2 +

1
�2M2

u

��
�2e��x

� x

0
�.Ṽ(i)dx� =

�
�1 + �2

�
2 +

1
�2M2

u

��
�2

�

�
1� e��x

�

qN = �2q2

�0 = ±i�P.Clavin XV
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at the end of the reaction ẇ = 0, ˜̇w = 0 : Ũ (i)(x)� constant term + oscillatory term

matching � the constant term of the internal solution should be zero � equation for �

= 0

when ˜̇w is known

� = ±i� + �2�2
2

method similar to that used for galloping detonations additional e�ect of wrinkling
Clavin et al (1997)
Daou Clavin (2003)see p.7-8 lecture XII

�2?

Matching

�T

�t
+

�T

�x
= qN (1 + �(i)

0 )ẇ ��

�t
+

��

�x
= (1 + �(i)

0 )ẇ x = 0 : T = TN (y, t), � = 0�(i)
0 = ��2

�0

�
1� e��0x

�

Reaction rate and dispersion relation �2(�)

S(i)(�) � �N (� � 1)s(i)
�N

(�) + s(i)
q (�) s(i)

�N
(�) �

� �

0
��N (x)e�i�xdx s(i)

q (�) �
� �

0
(1 + i�x)�(x)e�i�xdx

�0

�

�
2
�0�2

�2
+ h + q2 � 1� �0�2

�2
+ 1� 3

4
h =

q2

2
S(i)(�)

� �

0

�
˜̇w + �̃(i)

0 ẇ
�

dx� =
�2

�

�
�1 + S(i)(�)

� � equation for �2(�)

il2 � �0 �
�

2�0�2 + (h + q2 � 1) �2

�
1 +

1
M2

u

� � � 1
2

�
��2�2il2�ub

�
�1 + �2

�
2 +

1
�2M2

u

��
�2

�
+qN

� �

0

�
˜̇w + �̃(i)

0 ẇ
�

dx�
constant

term

internal solution

ũ(i) =
�
�0 + �2ũ(i)

b2

�
e��x

oscillatory term with an amplitude varying on a long length scale, Re(�) = O(�2)

external solution
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Linear growth rate

2
Re(�)/�,

qN
= �Im

�
S(i)(�)

�
� MN�

qN
S(a)(�)

Daou Clavin (2003)

0 0.2 0.4 0.6 0.8 1.0 1.2
−0.004

−0.002

0

0.002

Numeric

Analytic

Threshold of linear instability for �N = 0 � = 1.05, M2
u = 20

qN = 0.26

qN = 0.24

good agreement between theory and numeric

(MN = 0.267)

Arrhenius law with �NqN = 0.1
0 2 4 6 8 10

−1

0

1

2

3

4

5

6

7

still working when �N = 0

qN = 0.03

qN = 0.04

−0.005

−0.0025

0

0.0025

0.005

Unstable branch

Stable
branch

(a)

Nonphysical

0 1.5 2.0 2.50.5 1.0 0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

Unstable branch

(b)

0.5 1.0

(� � 1) = 0.1, �N = 10, M2
u = 50

qN �
�

stabilisation
instability

S(i)(�) � �N (� � 1)s(i)
�N

(�) + s(i)
q (�)

s(i)
q (�) �

� �

0
(1 + i�x)�(x)e�i�xdx

s(i)
�N

(�) �
� �

0
��N (x)e�i�xdx

sensitivity to TN
strong instability due to wrinkling

quasi-isobaric instability mechanism
Im S(i) < 0

S(a)(�) � 2

�����Im

�
(� � 1)

2qN
+ S(i)(�)� 1

�����

stabilizing e�ect due to compressibility

> 0



Clavin Denet (2002)
Weakly nonlinear analysis of cellular detonations
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Near to the instability threshold the dominant nonlinear e�ects are those responsible for singularity formation
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Model equation
A weakly nonlinear analysis leads to a combination of the linear equation for the multidimensional instability

of an overdriven detonation and the nonlinear equation for the lead shock

x = �(y, t)equation of the detonation front
�2�

�t2
� c2�2� +

�|��|2

�t
= qNL(i)(�)� 2MN

�
qN

�

�t
L(a)(�)

nonlinear dynamics of the lead shock stabilisation due to compressibility

L(a)(�) � ��̃/2 in Fourier space

Mode number,

G
ro

w
th

 ra
te

(a)

(b)
(c)

Good qualitative agreement with the experimental observation

quasi-isobaric instability

L(i)(�) = �N (� � 1)l(i)�N
(�) + l(i)q (�)

l(i)�N
(�) =

�2

�t2

� �

0
��N (x)�(t� x)dx, l(i)q (�) = �2

� �

0
�(x)�(t� x)/dx where �(x) � �(x) + d(x�)/dx

c2 = 1 + 3(� � 1)/2

on the inert shock front (representative of Mach stem), see p.12 of lecture XIV



XV-2 Cellular instability near the CJ condition  

Formulation

Boundary conditions: Rankine-Hugoniot at the shock front and boundedness condition in the burnt gas x��
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Clavin Williams 2009, 2012

Distinguished limit

Same distinguished limit as in pp 9-10 lecture XII
�2 � (� + 1)

2
qm

cpTu
� 1 (� � 1) = O(�)

Near the CJ regime the instability threshold concerns transonic conditions associated with small heat release
Clavin Williams 2009

!
notation

�̆ � w/aut � t

tN
, x � x

autN
, ŭ � u

au
, �̆ � 1

�
ln

�
p

pu

�
, �̆ � (T � Tu)

Tu
y � y/autNWith the notations of p.10 lecture XII one introduces and

Extension of the analysis of galloping detonations (planar case) pp 9-13 lecture XII

D/Dt � �/�t + u�/�x + w�/�y

1
�p

D±p

Dt
± 1

a

D±u

Dt
=

qm

cpT

ẇ
tN
� �w

�y
Dw

Dt
= �1

�

�p

�y

D±

Dt
� �

�t
± (a± u)

�

�x
+ w

�

�y

Reactive Euler equations in 2-D geometry

D�

Dt
=

ẇ
tN

1
T

DT

Dt
� (� � 1)

�

1
p

Dp

Dt
=

qm

cpTu

ẇ
tN

Same as in p.9 lecture XII but with

�
�

�t
+ ŭ

�

�x

�
�̆ = ���̆

�y�
�

�t
+ ŭ

�

�x

�
� = ẇ

acoustic wave vorticity wave

entropy wave

w�/�y introduces negligible corrections, the reduced equations take
the form

ẇ(�, �)

Anticipating that the transverse convection
�

�

�t
± (1± ŭ)

�

�x

�
(�̆ ± ŭ) = �2ẇ� ��̆

�y�
�

�t
+ ŭ

�

�x

�
[�̆ � (� � 1)�̆] = �2ẇ

(small heat release)
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x�(t)� = 0

D heat releaseinduction

oscillations

oscillations

induction

x�(t)� = 0

D heat releaseinduction

oscillations

oscillations

induction

acoustic waves

entropy wave

y

� � t

tN/�
= � t t � t/tN �/�t = ��/��

the downstream propagating acoustic wave and the voracity wave are quasi instantaneous

� = O(1)

Scalings
Time scale

same relations as in the planar case
see p.11 lecture XII
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��
�

�t
+ ŭ

�

�x

�
� = ẇ

�
�

�t
+ ŭ

�

�x

�
�̆ = ���̆

�y

��

�x
= ���

��
additional relation in the transverse direction

(vorticity wave)

µ = O(1), � = O(1), � = O(1)

qm � cpTu � the variation across the detonation thickness are small

Longitudinal variations

ŭ � u

au
= 1 + �µ, �̆ � 1

�
ln

�
p

pu

�
= ��, �̆ � (T � Tu)

Tu
= �2�

Leading order relations
w

�

�y
=

�2

tN
�

�

��
is negligible in front of the unsteady term

�

�t
=

�

tN

�

��
transverse convection

downstream propagating acoustic wave

� �

�x
(� + µ) = 0

�
�

�t
+ (1 + ŭ)

�

�x

�
(�̆ + ŭ) = �2ẇ� ��̆

�y

entropy-vorticity wave �

��
[� � h� � �] � 0(� � 1) � �h�

�

�t
+ ŭ

�

�x

�
[�̆ � (� � 1)�̆] = �2ẇ

wN = (D � uN )��
y

Rankine-Hugoniot
� where

Transverse scaling

x = a(�t, y)� = 0 : �̆ = 2�
�

f�a/�y, ��̆/�y = 2�
�

f�2a/�y2

non-dimensional
equation of the
wrinkled shock front
a = amplitude/(autN )

(obtained by the linear approximation of the Rankine-Hugoniot relations)

(p.5 lecture IV, p.6 lecture XIII)

�
�

y � y/(autN ) = O(1/
�

�)

�̆ � w/au = O(�3/2)� ��̆/�y = O(�2) � �2a/�y2 = O(�)
�

�

�t
± (1± ŭ)

�

�x

�
(�̆ ± ŭ) = �2ẇ� ��̆

�y �

As in p. 11 lecture XII the slow time scale is controlled by the upstream-running acoustic
wave in the feed back loop between the shock and the reacting gas

� � y
�

� = O(1) � = O(1)�̆ = �3/2� � x = a(�, �)
a�

� � �a/�� = O(1)

ȧ� � �a/�� = O(1)

y
�

�



3 first order PDEs for �, µ and �
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Model for CJ or near CJ regimes

Clavin Williams 2009, 2012

� � x�a(�, �),
�

�x
� �

��
,

�

�y
�
�

�

�
�

��
� a�

�
�

��

�
,

�

�t
� �

�
�

��
� ȧ�

�

��

�
� = �t, � =

�
�y,

The boundary conditions at � = 0 (Neumann state) for � and � are given by the Rankine-Hugoniot conditions in p.7 of lecture X where Mu

is replaced by (D � ��/�t)
au [1 + (��/�y)2]1/2 Mu � 1 + �

��
f � ȧ� � (1/2)(a�

�)2
�

+ ..that is, to leading order,
the first nonlinear correction is purely geometrical

In the moving frame x = a(�, �)

� � � 0 : � = �µ +
�

f, � = h
�

f � hµ + � same relations as in the planar case see p. 13 lecture XII

Up to first order, the boundary conditions at � = 0 for �, µ and � are the same as in the planar case p 12 lecture XII

� = 2h[
�

f � ȧ� � (1/2)(a�
�)2]

where ȧ� � ȧ� + (1/2)(a�
�)2

� = 0 : µ + � =
�

f, µ = �
�

f + 2[ȧ� + (1/2)(a�
�)2], � = 0

the equations for the downstream running acoustic mode and the entropy-vorticity wave yield
�

��
(� + µ) = 0

��

��
� ���

��
+ a�

�
��

��
�

��
[� � h� � �] � 0

��

��
= ẇ(�, �)

��

��
=

�µ

��
� a�

�
�µ

��
� = 0 : � = 2

�
fa�

� � 2[ȧ� + (1/2)(a�
�)2]a�

�

x = � : w = (D � u)��
y (p.5 lecture IV)

where � is solution to with the boundary condition

with 3 boundary conditions at � = 0

additional terms coming from the front wrinkling

�
Upstream-running acoustic wave

2
�

�

��
+ (µ� ȧ� )

�

��

�
µ = �ẇ(�, �) +

��

��
� a�

�
��

��

�
�

�t
� (1� ŭ)

�

�x

�
(�̆ � ŭ) = �2ẇ� ��̆

�y

� �� : � = 1, ẇ = 0, µ = µb = �
�

f � 1

An integral equation for a(�, �) is obtained when applying the downstream boundary condition
see Clavin-Williams 2009 for
a more general condition:
radiation condition
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Multidimensional stability analysis (analytical expressions)
P.Clavin XV

form, can be
obtained for a simplified reaction rate, assuming that it depends on temperature only at the Neumann state
Analytical expressions for the linear growth rate vs the wave number, written �(�) in non-dimensional

Model equation
Then the linear problem is reduced to solve a single ODE of second order

d2Y

d�2
� �

dY

d�
� �2

2
|µ|Y =

1
2

d�
d�

+
�

2
h|µ|��

N

(with variable coe�cients)

( see p.8 lecture XII)

where d� = d�/|µ(�)|, �(�) is the distribution of heat release rate in the steady state and ��
N (�) is the distribution

denoting the thermal sensitivity

,

see p. 7 lecture XIIẇ(�, �) � ẇ(�N ,�) �N = O(1/�2)(� � 1)�N = O(1)with

� = 0 : Y = �2
�

f, dY/d� = �2�
�

f, � �� : Y = 0

The dispersion relation is obtained by applying the 3 boundary conditions
Clavin Williams 2009

:

Wavenumber

(a)

This approximation is well verified for the main mechanism of instability that is associated with the variation
of the induction length

the detonation thickness by a factor (M2
u � 1)�1/2)

(M2
u � 1)�1occurs before the planar instability with a pulsating frequency larger than the transit time by a factor

sensitivity �N or the induction length n . The Poincaré-Andronov (Hopf) bifurcation

when increasing the thermal
The multidimensional instability develops at a finite wave length (larger than

see the scaling of length and time p.11Bifurcation scenario similar to that of the strongly overdriven regimes

Analytical result
The equation for � becomes polynomial for a particular example �(�) =

�n

n!
e�� ��

N (�) =
d(��)

d�
|µ| � 1and

4

�
1 +

� +
�

�2 + 2�2

2

�n+2

= H� +

�
1 +

� +
�

�2 + 2�2

2

�
H � (n + 1)�N (� � 1)
single parameter


