Tsinghua-Princeton-CI Summer School July 14-20, 2019

Structure and Dynamics of Combustion Waves in Premixed Gases

Paul Clavin Aix-Marseille Université ECM & CNRS (IRPHE)

Lecture IV Hydrodynamic instability of flames

Copyright 2019 by Paul Clavin This material is not to be sold, reproduced or distributed without permission of the owner, Paul Clavin

Lecture 4 : Hydrodynamic instability of flames

- 4-1. Jump across an hydrodynamic discontinuity
- 4-2. Linearized Euler equations of an incompressible fluid
- 4-3. Conditions at the front
- 4-4. Dynamics of passive interfaces
- 4-5. Darrieus-Landau instability
- 4-6. Curvature effect: a simplified approach

IV - 1 Jump across an hydrodynamic discontinuity

flame considered as a discontinuity flame thickness and curvature neglected

 $\Lambda \gg d_L$

flame \approx surface of zero thickness separating two incompressible flows

Low Mach nb approx + inviscid approx: Euler eqs

$$\partial \rho / \partial t = -\nabla .(\rho \mathbf{u})$$
 $\rho \mathbf{D} \mathbf{u} / \mathbf{D} t = -\nabla p \Leftrightarrow \partial (\rho \mathbf{u}) / \partial t = -\nabla .(p \mathbf{I} + \rho \mathbf{u} \mathbf{u})$
tilted planar front
reference frame of the flame $\mathbf{r} = (x, z), \quad \mathbf{u} = (u, w)$
 $\partial \rho / \partial t = -\partial (\rho u) / \partial x - \partial (\rho w) / \partial z,$
 $\partial (\rho w) / \partial t = -\partial (p + \rho u^2) / \partial x - \partial (p + \rho w^2) / \partial z$
jump relations (reference frame of the flame)
 $[\rho u]_{-}^{+} = 0$ $\rho u = \rho_u U_L = \rho_b U_b$
 $[p + \rho u^2]_{-}^{+} = 0$
 $\rho u \neq 0 \Rightarrow [w]^{+} = 0$

 $\rho_u > \rho_b$

 U_L

Unburnt mixture

at rest

Flame

 $U_b - U_L$

Burnt gas

reference frame of the flame front

$$\frac{U_b}{U_L} = \frac{\rho_u}{\rho_b} = \frac{T_b}{T_u}$$

conservation of mass + isobaric approx

"instantaneous" modification of the flow field, both upstream and donstream (low Mach nb approx: the speed of sound is infinite, $a \approx \infty$)

reference frame of the planar unperturbed flame (x = 0)

flow velocity relative to the perturbed front

$$U_n \equiv u_n - \mathcal{D}_f = \left(u_f - \dot{\alpha}_t - \alpha'_y w_f\right) / \sqrt{1 + \alpha'_y^2} \qquad \qquad W_{tg} = w_{tg}$$

component tangentail component

normal component

conservation of mass $\overline{\rho}^{-}U_{n}^{-} = \overline{\rho}^{+}U_{n}^{+}$ $\overline{\rho}^{-}\left(u_{f}^{-} - \dot{\alpha}_{t} - \alpha_{y}^{\prime}w_{f}^{-}\right) = \overline{\rho}^{+}\left(u_{f}^{+} - \dot{\alpha}_{t} - \alpha_{y}^{\prime}w_{f}^{+}\right)$

conservation of momentum

$$\begin{bmatrix} p + \overline{\rho}U_n^2 \end{bmatrix}_{-}^{+} = 0 \qquad [W_{tg}]_{-}^{+} = 0$$

$$p_f^- + \overline{\rho}^- \frac{\left(u_f^- - \dot{\alpha}_t - \alpha'_y w_f^-\right)^2}{1 + \alpha'_y^2} = p_f^+ + \overline{\rho}^+ \frac{\left(u_f^+ - \dot{\alpha}_t - \alpha'_y w_f^+\right)^2}{1 + \alpha'_y^2} \qquad \left(w_f^- + \alpha'_y u_f^-\right) = \left(w_f^+ + \alpha'_y u_f^+\right)$$

IV - 2) Linearised Euler equations of an incompressible fluid

$$\begin{split} \frac{\partial}{\partial x} \delta u^{\pm} + \frac{\partial}{\partial y} \delta \mathbf{w}^{\pm} &= 0, \\ \mathbf{a} &= \overline{a} + \delta a \\ \overline{m}_{f} &= \overline{p}^{-} \overline{u}_{f}^{-} &= \overline{p}^{+} \overline{u}_{f}^{+} \\ \begin{pmatrix} \overline{p}^{\pm} \frac{\partial}{\partial t} + \overline{m}_{f} \frac{\partial}{\partial x} \end{pmatrix} \delta u^{\pm} &= -\frac{\partial}{\partial x} \delta \pi^{\pm} \\ \begin{pmatrix} \overline{p}^{\pm} \frac{\partial}{\partial t} + \overline{m}_{f} \frac{\partial}{\partial x} \end{pmatrix} \delta \mathbf{w}^{\pm} &= -\frac{\partial}{\partial y} \delta \pi^{\pm}, \\ \\ x &\to +\infty : \text{ disturbances remain finite,} \\ x &\to -\infty : \text{ no disturbances,} \quad \delta u^{-} &= 0 \\ \hline \text{transverse coordinates} \\ \hline \delta a(x, \mathbf{y}, t) &= \tilde{a}(x, t) e^{\mathbf{i} \mathbf{k} \cdot \mathbf{y}} \\ a(\mathbf{y}, t) &= \tilde{a}(t) e^{\mathbf{i} \mathbf{k} \cdot \mathbf{y}} \\ a(\mathbf{y}, t) &= \tilde{a}(t) e^{\mathbf{i} \mathbf{k} \cdot \mathbf{y}} \\ a(\mathbf{y}, t) &= \tilde{a}(t) e^{\mathbf{i} \mathbf{k} \cdot \mathbf{y}} \\ end{tabular} \\ flow velocity \\ \hline \frac{\partial \tilde{a}^{\pm}}{\partial x} + \mathbf{i} \mathbf{k} \cdot \tilde{\mathbf{w}}^{\pm} &= 0 \\ \hline \overline{p}^{\pm} \left(\frac{\partial}{\partial t} + \overline{u}^{\pm} \frac{\partial}{\partial x} \right) \tilde{u}^{\pm}(x, t) &= \pm |\mathbf{k}| \tilde{\pi}_{f}^{\pm}(t) e^{\mp |\mathbf{k}| x} \\ general solution to the homogeneous equation + particular solution \\ \hline \tilde{u}^{\pm}(x, t) &= \tilde{u}_{R}^{\pm}(x, t) + \tilde{u}_{P}^{\pm}(x, t) \\ \frac{\partial \tilde{u}_{R}^{\pm}}{\partial t} + \overline{u}^{\pm} \frac{\partial \tilde{u}_{R}^{\pm}}{\partial x} &= 0, \\ \hline \overline{p}^{\pm} \left(\frac{d}{dt} \mp \overline{u}^{\pm} k \right) \tilde{u}_{p}^{\pm}(t) &= \pm k \tilde{\pi}_{f}^{\pm}(t) \\ \hline \overline{p}^{\pm}(t) &= \pm k \tilde{\pi}_{f}^{\pm}(t) \\ \hline \end{array}$$

$$\begin{split} \tilde{u}^{V} & \tilde{u}^{\pm}(x,t) = \tilde{u}_{R}^{\pm}(x,t) + \tilde{u}_{P}^{\pm}(x,t) \\ k \equiv |\mathbf{k}| = 2\pi/\Lambda \qquad \tilde{u}^{-} = \tilde{u}_{P}^{-} = \tilde{u}_{f}^{-}(t)\mathrm{e}^{kx} \qquad \tilde{u}_{P}^{+} = \tilde{u}_{p}^{+}(t)\mathrm{e}^{-kx} \\ \frac{\partial \tilde{u}_{R}^{\pm}}{\partial t} + \overline{u}^{\pm} \frac{\partial \tilde{u}_{R}^{\pm}}{\partial x} = 0, \qquad \tilde{u}_{R}^{\pm} = \tilde{u}_{r}^{\pm}(t - x/\overline{u}^{\pm}), \qquad \tilde{u}_{R}^{-} = 0, \qquad \tilde{u}_{R}^{+} = \tilde{u}_{r}^{+}(t - x/\overline{u}^{\pm}), \\ 3 \text{ unknown functions: } \tilde{u}_{f}^{-}(t), \quad \tilde{u}_{p}^{+}(t), \quad \tilde{u}_{r}^{+}(t) \\ x < 0: \qquad \begin{cases} \tilde{u}^{-}(x,t) = \tilde{u}_{f}^{-}(t)\mathrm{e}^{+kx}, \\ k\tilde{\pi}^{-}(x,t) = -\overline{\rho}^{-}\left(\frac{\mathrm{d}}{\mathrm{d}t} + \overline{u}^{-}k\right)\tilde{u}_{f}^{-}(t)\mathrm{e}^{+kx}, \\ k\tilde{\pi}^{-}(x,t) = -\overline{\rho}^{-}\left(\frac{\mathrm{d}}{\mathrm{d}t} - \overline{u}^{+}k\right)\tilde{u}_{f}^{-}(t)\mathrm{e}^{-kx}, \\ k\tilde{\pi}^{+}(x,t) = \overline{\rho}^{+}\left(\frac{\mathrm{d}}{\mathrm{d}t} - \overline{u}^{+}k\right)\tilde{u}_{p}^{+}(t)\mathrm{e}^{-kx}, \\ \mathrm{i}\mathbf{k}.\tilde{\mathbf{w}}^{-}(x,t) = -k\tilde{u}^{-}(x,t), \qquad \mathrm{i}\mathbf{k}.\tilde{\mathbf{w}}^{+}(x,t) = -\frac{\partial}{\partial x}\tilde{u}^{+}(x,t). \end{split}$$

4 boundary conditions at the flame front involving the additional unknown $\tilde{\alpha}(t)$ 2 for the conservation of mass (inner flame structure not modified) $\delta m_f^- = \delta m_f^+ = 0$ $m \equiv \rho(u - \partial \alpha / \partial t)$

2 for the conservation of normal and tangential momentum

IV-4) Dynamics of a passive interface

$$\overline{m}_{f} = 0$$

$$(\overline{\rho}^{-} + \overline{\rho}^{+}) \frac{d^{2}\tilde{\alpha}}{dt^{2}} + 2\overline{\omega_{f}} k \frac{d\tilde{\alpha}}{dt} - k[(\overline{\rho}^{-} - \overline{\rho}^{+})g(t) + (\overline{u}^{+} - \overline{\omega_{f}})g(t)] + (\overline{u}^{+} - \overline{\omega_{f}})g(t)] = \tilde{\alpha}(t)e^{i\mathbf{k}\cdot\mathbf{y}}$$
Rayleigh
Rayleigh-Taylor instability
 $g = \operatorname{cst.} (\overline{\rho}^{-} - \overline{\rho}^{+})g > 0$
Rayleigh-Taylor bubble (upwards propagation)
 $g > 0, \quad A_{t} \equiv \frac{\rho_{-} - \rho_{+}}{\rho_{-} + \rho_{+}} > 0 \quad \sigma = \sqrt{A_{t}gk} \quad U_{bubble} = 0.361\sqrt{2gR}$
Gravity waves
 $g = \operatorname{cst.} (\overline{\rho}^{-} - \overline{\rho}^{+})g < 0$
 $\overline{\alpha}(t) = \hat{\alpha} e^{i\varpi t} \quad \overline{\omega} = B\sqrt{gk} \quad B = \sqrt{\frac{(\rho_{+} - \rho_{-})}{(\rho_{+} + \rho_{-})}}$
Faraday (parametric) instability. Mathieu's equation
 $g(t)$ oscillating
 $\frac{d^{2}\tilde{\alpha}}{dt^{2}} + \overline{\omega}_{o}^{2} [1 + \epsilon \cos(\varpi\tau)] \tilde{\alpha} = 0$

 $d_L/\Lambda \rightarrow 0$: no length scale in the problem; dimensional analysis $\Rightarrow \sigma \propto U_L k$

$$\rho_u \gg \rho_b : \sigma = \sqrt{U_b U_L} k \qquad (\rho_u - \rho_b) / \rho_u \ll 1 : \sigma = (U_b - U_L) k / 2$$

 $k = 2\pi/\Lambda$ shorter is the wavelength stronger is the instability !? however the analysis is valid only in the limit $d_L/\Lambda \to 0$

P.Clavin IV VI-6) Curvature effect: a simplified approach

modification to the inner flame structure $\delta m_f^- \stackrel{?}{=} \delta m_f^+ \neq 0$

first order in perturbation analysis $d_L/\Lambda \ll 1$ $\delta m_f^-/\overline{\rho}^- \equiv (\delta u_f^- - \dot{\alpha}_t) = -\mathcal{B}D_T \partial^2 \alpha / \partial y^2$ $\tilde{m}_f^-(t)/\overline{m}_f \approx \mathcal{B}d_L k^2 \tilde{\alpha}(t)$ $D_T = U_L d_L$

Normal momentum

$$\delta p_f^- + 2\overline{\rho}^- \overline{u}_f^- (\delta u_f^- - \dot{\alpha}_t) = \delta p_f^+ + 2\overline{\rho}^+ \overline{u}_f^+ (\delta u_f^+ - \dot{\alpha}_t)$$

(flame notations:
$$\bar{\rho}^+ \to \rho_b, \ \bar{\rho}^- \to \rho_u, \ \rho_u > \rho_b$$
) $\tilde{\pi}_{f+} - \tilde{\pi}_{f-} = -2\overline{m}_f \left(\frac{1}{\rho_b} - \frac{1}{\rho_u}\right) \tilde{m}_f(t) + (\rho_u - \rho_b)g(t)\tilde{\alpha}(t)$

equation for the flame front (correction due to curvature, finite thickness effect $kd_L \neq 0$)

$$(\rho_{u}+\rho_{b})\frac{\mathrm{d}^{2}\tilde{\alpha}}{\mathrm{d}t^{2}}+2\overline{m}_{f}k\frac{\mathrm{d}\tilde{\alpha}}{\mathrm{d}t}\left(1+\mathcal{B}kd_{L}\right)=k\tilde{\alpha}(\rho_{u}-\rho_{b})\left[g(t)+U_{b}U_{L}k\left(1-2\mathcal{B}kd_{L}\right)\right]$$
flame propagating downwards $g<0$

$$\frac{1}{k_{m}}\equiv 2\mathcal{B}d_{L} \qquad \left(1+\frac{\rho_{b}}{\rho_{u}}\right)\frac{\mathrm{d}^{2}\tilde{\alpha}}{\mathrm{d}t^{2}}+2U_{L}k\frac{\mathrm{d}\tilde{\alpha}}{\mathrm{d}t}=\left(\frac{\rho_{u}}{\rho_{b}}-1\right)k\left[-\frac{\rho_{b}}{\rho_{u}}|g|+U_{L}^{2}k\left(1-\frac{k}{k_{m}}\right)\right]\tilde{\alpha}$$
non-dimensional parameters $v_{b}\equiv\overline{\rho}^{-}/\overline{\rho}^{+}=\overline{u}^{+}/\overline{u}^{-}>1$
 $s=\sigma\tau_{L}$ $\kappa\equiv kd_{L}$ $\kappa_{m}\equiv 1/(2\mathcal{B})$ $\mathcal{G}_{0}\equiv(\rho_{b}/\rho_{u})\mathrm{Fr}^{-1}$ $\mathrm{Fr}^{-1}\equiv|g|d_{L}/U_{L}^{2}$

$$(1+\upsilon_b^{-1})\mathbf{s}^2 + 2\kappa\mathbf{s} - (\upsilon_b - 1)\kappa\left[-\mathcal{G}_o + \kappa\left(1 - \frac{\kappa}{\kappa_m}\right)\right] = 0$$

Stability limits of flames propagating downwards $\sigma = 0$

marginal wavenumber

$$\left[-\mathcal{G}_o + \kappa \left(1 - \frac{\kappa}{\kappa_m}\right)\right] = 0,$$

Flames propagating upwards: bubble flames

12

 $\mathcal{G}_{oc} = \frac{\kappa_c a_L}{2}, \quad k_c = \frac{\kappa_m}{2},$

OK with experiments by Boyer Quinard and Searby (1982)

instability threshold $U_L \approx 10 \text{cm/s}$

P.Clavin IV

 $\mathcal{G}_{oc} = \frac{k_c d_L}{2}, \quad k_c = \frac{k_m}{2}, \quad U_{Lc} = \sqrt{2 \frac{\rho_b}{\rho_u} \frac{|g|}{k_c}}$

gravity stabilizes the large wavelengths of slow propagating flame curvature stabilizes the small wavelengths

marginal wavenumber $\sigma = 0 \left[-\mathcal{G}_o + \kappa \left(1 - \frac{\kappa}{\kappa_m} \right) \right] = 0, \qquad g = 0, \ \mathcal{G}_0 = 0$

gravity stabilizes the large wavelengths of slow propagating flame $U_L < 10 \text{ cm/s}$

non-dimensional parameters $\kappa \equiv k d_L$ $\kappa_m \equiv 1/(2\mathcal{B})$ $\mathcal{G}_0 \equiv (\rho_b/\rho_u) \operatorname{Fr}^{-1} \operatorname{Fr}^{-1} \equiv |g| d_L / U_L^2$ $s = \sigma \tau_L$ $(1 + \upsilon_b^{-1}) s^2 + 2\kappa s - (\upsilon_b - 1) \kappa \left[-\mathcal{G}_o + \kappa \left(1 - \frac{\kappa}{\kappa_m} \right) \right] = 0$

Stability limits of flames propagating downwards

 $\mathcal{G}_0 >$

Stable

