Chapter 2: Benchmark Experiments

TU Darmstadt, Germany Dept. of Mechanical Engineering Institute for Reactive Flows and Diagnostics

Validation of numerical simulations

- Experimental research in turbulent flames needs suitable generic combustion systems
- Numerical simulations are based on models
 - Turbulence model
 - Combustion model
 - Turbulence-chemistry interaction model
 - Spray model ...

Dreizler, Janicka. "Applied Combustion Diagnostics", edited by K. Kohse-Höinghaus and Jay Jeffries, Francis and Taylor, New York (2002)

Validation of numerical simulations

- Experimental research in turbulent flames needs suitable generic combustion systems
- Numerical simulations are based on models
 - Turbulence model
 - Combustion model
 - Turbulence-chemistry interaction model
 - Spray model ...
 - →Comprehensive and reliable data sets for validation and improved understanding are a prerequisite

 \rightarrow (Quantitative) Experiments in Combustion

→ Need for suitable **benchmark experiments** mimicking specific aspects of real-world combustion systems

Dreizler, Janicka. "Applied Combustion Diagnostics", edited by K. Kohse-Höinghaus and Jay Jeffries, Francis and Taylor, New York (2002)

Bench mark flames/ configurations

- Requirements for optical diagnostics
 - Optical access from three sides to enable application of different laser diagnostics
 - Nozzle exit accessible, such that radial profiles can be recorded as close as possible (~1mm)
 - Optical access to interior of nozzle (if possible)
 - In case of atmospheric flames shielding from the lab (coflowing air)
 - Decoupling of the flame from the exhaust gas system
 - Fuel composition that does not interfere with the laser/ detection wavelength

Bench mark flames/ configurations

- Requirements for validation of numerical simulations
 - Known or measurable inflow conditions
 - Well-defined boundary conditions
 - Parametric variation ("flame sequence") of key-quantities such as
 - Fuel composition, equivalence ratio
 - Reynolds-number, thermal load
 - Swirl intensity
 - Pressure
 - Geometry
 - \rightarrow Identify sensitivities

From simple to complex – benchmark configurations at TUD

Andreas Dreizler | 6

Bench mark configurations

• 1 Example of optically accessible IC-engine

TECHNISCHE

UNIVERSITÄT DARMSTADT

Example 1: Turbulent opposed jet flame

- Two identical opposed nozzles, D=H=30mm
- Turbulence intensity ~0.07 at nozzle exit, enhanced by turb. grid (tgp)
- N₂ coflow prevents ambient air mixing
- Access laser beam along burner axis
 → no beam steering
- Horizontal stagnation plane → symmetric influence of gravity
- Water cooling for stable long term operation
- Parametric variation
 - Fuel composition
 - Reynolds-No. (stable to extinction)

Geyer et int. Dreizler. CNF (2005) 143:524 - 548

- "Flame sequence" \rightarrow Variation of fuel composition and Re
- Fuel: partially premixed methane/air (avoiding soot)

	Re _{air}	<i>a</i> _m (1/s)	Φ = 3.18	Φ = 2.0	Φ = 1.6	Φ = 1.2
	3300	115	TOJ1A			
	4500	158	TOJ1B	TOJ2B	TOJ3B	TOJ4B
	5000	175	TOJ1C	TOJ2C		
	6650	235	TOJ1D	TOJ2D		
Extinction limit	7200	255		TOJ2E		

• Flow field quantities for TOJ2D

Bulk velocity $W_{\rm b}$	3.4m/s
Turbulent Re-number Re _t	90
Bulk strain rate $a_{b} = (-W_{b,O} + W_{b,F})/H$	231s ⁻¹
Residence time in mixing layers $t_{res} = a_b^{-1}$	4.3ms
Large-eddy turnover time $t_{ov} = l_0 / (2k)^{1/2}$	16.2ms
Integral time scale <i>T</i> at nozzle exit	1.6ms
Integral length scale I_0 at nozzle exit	4.7mm
Kolmogorov length scale $\eta_{\rm K}$ at nozzle exit	0.16mm
Batchelor scale at nozzle exit η_c	0.18mm

Visual impression

Time-averaged flame luminosity

Transient flame luminosity @ 500 Hz

- Special feature of turbulent opposed jet flames:
 - Investigation of flame extinction by increasing strain close to critical value
 - Extinction monitored by temporally resolved chemiluminescence, 10 kHz

Bench mark configurations

- Example 2: Swirling lean premixed flame
 - Relevant for flame stabilization in real combustors
 - Complex chemistry <u>and</u> complex flow field properties

- Need for reliable data sets of premixed flames
- Parametric variation of
 - Reynolds number
 - Swirl number
 - Equivalence ratio

Schneider et int. Dreizler. Flow Turbulence and Combustion (2005) 74:103 – 127

TECHNISCHE

UNIVERSITÄT DARMSTADT

• Swirl number

 G_{θ} Axial flux of tangential momentum

- G_x Axial flux of axial momentum
- Variation by moveable block (motor driven, gear reduction)

• Parametric variation: Re

		PSF-30	PSF-90	PSF-150
S _{0,th}	[-]	0.75	0.75	0.75
Р	[kW]	30	90	150
ϕ	[-]	0.833	0.833	1.0
Q _{gas}	[m _n ³ /h]	3.02	9.06	15.1
Q _{air}	[m _n ³/h]	34.91	104.33	145.45
Re _{tot.}	[-]	10000	29900	42300
s _L	[m/s]	0.36	0.36	0.42
I _F	[m]	0.26 [.] 10 ⁻³	0.26 [.] 10 ⁻³	0.18 [.] 10 ⁻³

Classification in regime diagram •

Turbulent length scale/ laminar flame thickness

Visual impression

- Transition into flashback
 - Variation of swirl number
 - Variation of equivalence ratio
- Slight adaptation of nozzle geometry
 - Extension of bluff body

Heeger et int. Dreizler. Exp. in Fluids (2010) 49:853 – 864

Three states of operation

Stable: stabilization at the edge of the bluff body

Spinning: flame precesses around the shell of the bluff body

After flashback: the flame is stabilized at the swirler

• Precessing flame

Meta-stable

• Precessing flame

Flashback

• After flash back: view from top (slightly tilted)

• After flash back: view from top (slightly tilted)

- Flame luminescence monitored by intensified CMOS-camera at a frame rate of 7kHz
- Only 6 exposures of a full cycle are shown
- Cycle duration ~7.5±0.6ms.

- Transition from spinning
 into flashback
 - Transparent nozzle
 - Chemiluminescence recorded at high repetition rates (kHzregime)

- Transition from spinning into flashback
 - Transparent nozzle
 - OH-PLIF and 2C-PIV recorded at high repetition rates (kHzregime)

- Transition from spinning into flashback
 - Simultaneous optical and pressure measurements
 - <u>Multi-parameter</u>
 <u>diagnostics</u> crucial for
 better understanding

Stability map

- For fixed geometrical swirl number

- Flashback is favored by
 - Lower Reynolds numbers
 - Higher laminar flame speeds
 - Higher swirl intensity (not shown in this graph)

Bench mark configurations

- Example 3: enclosed pressurized flames
 - Non-premixed natural gas flames or spray flames and lean premixed flames
 - Mimicking performance of real combustors but only single nozzle (for example circumferential modes in annular combustors not accessible)

• Modular setup

- Pressure housing
- Optically accessible flame tube
- Complex infrastructure
 - Pressurized air supply
 - Electrical heating of combustion air to mimic inlet conditions of GT-combustor
 - Pressurized fuel supply (natural gas compressor, for liquid fuels high pressure pump and large storage capacity)
 - Exhaust gas treatment (cooling)
 - Safety equipment (sensors and explosion protection)

- Optically accessible combustor
- "Can-combustor-concept"
- P_{max}=10bar, T_{max}=773K
- Modular to adapt different geometries/ combustion concepts
- Optical access from three sides for LDA/PDA, PIV, LIF, CARS, etc.
- No disturbance of primary reaction zone by cooling air
- CAD-design for computational meshes

Nozzles

- Spray flames: n-heptane / air
- Surrogate n-heptane advantageous compared to kerosene due to chemical kinetics modeling and spectroscopic properties

- Nozzles
 - Non-premixed gaseous flame: Natural gas / air

- Simple, generic design
- Non-reactive conditions: Mixture of helium and air to match density
- Swirl number from geometry S=1

Janus, Dreizler, Janicka. Proc. Combust. Inst. (2007) 31:3091 – 3098

Operational conditions

Pressure	2bar	4bar	6bar
Combustion air temperature	623K	623K	623K
Fuel temperature	373K	373K	373K
Combustion air mass flow	30g/s	60g/s	90g/s
Re _{Air}	46000	92000	138000
Re _{Fuel}	33000	67000	100000

• Visual impression

• Visual impression – chemoluminescence of spray flame

Optically accessible combustor

- For investigation of effusion cooling

Pressurized flames: effusion cooling

Greifenstein et int. Dreizler. Experiments in Fluids (2019) 60 (1):10

Present research: Effusion cooling

Herrmann et int. Dreizler. Flow Turb. Combust. (2019) https://doi.org/10.1007/s10494-018-9999-y

Present research: Effusion cooling

Low-pass (490nm) filtered Chemiluminescence images from piloted and premixed flames

- Present research: Effusion cooling
 - Flow field: 2C and 3C PIV
 - Flame brush: OH-PLIF
 - Mixing fields: Acetone PLIF
 - Gas temp: CARS
 - Surface temp: phosphor thermometry

- Present research: Effusion cooling
- Particle Image Velocimetry PIV

TECHNISCHE UNIVERSITÄT DARMSTADT

2D wall temperature

- Temperature measurement in flame wall contact zone at 20mm < x < 45mm
- Influence of cooling film visible in wakes behind single holes

Generic bench mark configurations

- Example 4: Optically accessible IC-engine
 - Different to GT-combustion there does not exist a simplified generic configuration where important and relevant effects can be studied!

Transparent DISI engine

Boundary conditions

Specifications

Optical accessible IC Engine

- Capacity: 499 ccm
- Bore: 86 mm
- Stroke: 86 mm
- Compression ratio: 8.5
- Optically accessible liner: 55 mm
- Motored or fired operation:
 - ≤ 3000 rpm
 - Manifold pressure: variable
- Seeding
 - Silicon oil (~1µm) or BN-particles

In-cylinder flow field measurements – 2C PIV

- Particle Image Velocimetry (PIV)
 - @ 16 kHz
 - -100-0 °bTDC
 - -~40x30mm²
 - -768x592px²
 - -273 cycles/run
- Challenges:
- Scattered light off surfaces
- Contamination optical accesses
- Suitable PIV-seeding particles
- Optimized interval between laser illumination

- Particle Image Velocimetry (PIV)
 - –Up to 16 kHz
 - -Different field of views
- <u>Challenges:</u>
- Scattered light off surfaces
- Contamination optical accesses
- Suitable PIV-seeding particles
- Optimized interval between laser illumination

In-cylinder flow field measurements – 2C PIV, full cycle

In-cylinder flow field measurements – 2C PIV

Renaud et int. Dreizler, Böhm. International Journal of Heat and Fluid Flow 71, 366-377

Towards volumetric imaging: example TomoPIV

Illumination

- Dual-cavity laser (PIV400, Spectra Physics)
- Avg. 375 mJ per single pulse
- Phase-locked acquisition during intake and compression (<5 Hz)
- Volume of: 48 x 35 x 4/8 mm

Detection

- Interline transfer CCD (ImagerIntense, LaVision, 1376x1040 pixels)
- Nikon 50 mm, 1.4 (f# 16)
- Limitation of Camera angles due to cylinder head bolts

Baum et int. Dreizler. Proc. Combust. Inst. (2013) 34:2903 – 2910

Iso-surfaces of instantaneous velocity magnitudes

Intake stroke (270° bTDC)

Baum et int. Dreizler. Proc. Combust. Inst. (2013) 34:2903 – 2910

TECHNISCHE

UNIVERSITÄT DARMSTADT

Conclusions – bench mark configurations

- Configurations of rising complexity and different geometries necessary to study different phenomena
- Optical access in atmospheric flames no problem
- Pressurized combustion (GT-combustor or IC-engine)
 - causes large investments for reliable, safe and reproducible operation
 - realization of optical access more difficult
- Improved characterization of inflow conditions needs more attention