Chapter 8: High-speed Laser Combustion Diagnostics – General Aspects

TU Darmstadt, Germany Mechanical Engineering – Reactive Flows and Diagnostics

Photron.com

Contents

- Why high-speed laser diagnostics?
- Instrumentation
 - High-speed lasers
 - High-speed cameras

State-of-the-art laser combustion diagnostics

- Flow and multi-scalar measurements
 - Low sampling rates (<100 Hz)
 - High precision and accuracy
 - Good for measuring statistical moments (single-point, two-point statistics)
 - Example: scatter plots by multi-scalar Raman/Rayleigh spectroscopy

State-of-the-art laser combustion diagnostics

TECHNISCHE

UNIVERSITÄT DARMSTADT

Motivation for high speed diagnostics

- Example flame extinction (w/o subsequent re-ignition)
 - Here turbulent opposed jet flows, partially premixed flame
 - Bulk flow rates close to global extinction

Böhm, Dreizler PCI 2009

Motivation for high speed diagnostics

- Example flame extinction (w/o subsequent re-ignition)
 - Here turbulent opposed jet flows, partially premixed flame
 - Bulk flow rates close to global extinction

Böhm, Dreizler PCI 2009

→ Tracking extinction needs high sampling rates, post eventtriggering and sequence lengths over 10 – 100ms

Individual extinction events

→ multiple vortices act coherently generating regions of high strain close to the flame at the onset of extinction

Conditional averages

- \rightarrow Maximum of axial strain surrounded by maxima of radial strain
- \rightarrow Imposed strain requires time to cause extinction
- \rightarrow Time history is important
- \rightarrow Diffusion requires time to reduce scalar gradients

800

600

400

-250

250

0

0

strain [1/s]

vorticity [1/s]

TECHNISCHE

UNIVERSITÄT

Multi-parameter diagnostics at high speed

- Simultaneous measurement of velocity fields and qualitative scalar fields that mark features of flames (such as flame fronts) allows determination of conditional velocities:
 - Switch from lab-coordinates to flame-fixed coordinates
 - De-convolute effects from intermittency
 - Better observation of interaction between flow and scalar fields

Transient phenomena in combustion research

- Phenomena requiring high speed diagnostics for better understanding
 - Extinction and re-ignition
 - Flame stabilization of lifted flames and flame propagation
 - Flashback in nozzles
 - Auto- and spark-ignition
 - Cycle-to-cycle variations in IC engines
 - 4D-imaging
- What repetition rate is needed?

Typical time scales – lab-scale turbulent premixed flame

• T_{int} ~ 1.0ms \rightarrow Sampling rate (0.1 x T_{int}) ~ 100µs \rightarrow 10 kHz

OH PLIF @ 5 kHz

@ 10 kHz

Respondence de la constante de

sequence runs "smoothly"

Typical time scales – IC engine

• IC engine operating at 1000 rpm \rightarrow resolving 1 °CA corresponds to 166 $\mu s \rightarrow 6 \ kHz$

Swirling annular flow: non-reacting and premixed flame (lab scale)

Iso-pressure surface Janicka et al. 2007

Re = 10,000 - 40,000 $P_{th} = 30 - 150 \text{ kW}$

TECHNISCHE UNIVERSITÄT

DARMSTADT

• Swirling annular flow: non-reacting and premixed flame (lab scale)

Iso-pressure surface Janicka et al. 2007

Re = 10,000 - 40,000

$$P_{th} = 30 - 150 \text{ kW}$$

Nyquist-Shannon theorem
$$f_{\text{repetition rate}} \ge \frac{2}{T_{\text{int}}} = 2000 \text{ fps}$$

• Kolmogorov time scale τ_{K} (integral length scale L_{int} from 2-point correlations)

$$\tau_{K} = \left(\frac{\nu}{\varepsilon}\right)^{0.5}; \quad \varepsilon = \frac{k^{1.5}}{L_{\text{int}}} \xrightarrow{\text{Example}} \tau_{K}$$

Swirl flame
Re = 40,000/10,000

 τ_{K} ~ 100 µs (representative estimate)

• Nyquist-Shannon theorem

Temporal resolution **Pixel rate** $l_{\text{FOV}} = n_x \cdot \Delta x = n_x \cdot l_{px} \cdot M$ $l_{\text{limit}} \ge 2 \cdot \Delta x$ Field of View: $l_{\rm FOV}$ Nyquist-Shannon: **Spatial dynamic range** Spatial and temporal resolution are interconnected via the maximum pixel rate R_{px} (read-out-rate of CMOS)

Interdependency of time and length scales

Andreas Dreizler | 16

Interdependency of time and length scales

Interdependency of time and length scales

$$R_{px} = 20 \cdot 10^{9} \text{ px/s}$$
Magnification = 1
 $\tau_{\text{limit}} = \tau_{K} = 100 \ \mu\text{s}$
 $l_{\text{FOV}} = 20 \text{ mm}$

$$\int \frac{l_{\text{FOV}}}{l_{\text{limit}}} = 500 \implies l_{\text{limit}} = 40 \ \mu\text{m}$$
Spatial dynamic range
 $I_{K} = \left(\frac{\nu^{3}}{\varepsilon}\right)^{0.25} \implies l_{K} = 50 \ \mu\text{m}$
Same range

Lab flames, present CMOS technology: Kolmogorov length and time scales resolvable FOV contains 2-5 integral length scales

Andreas Dreizler | 18

 $P_{th} = 30 \text{ kW}$

Dynamic ranges – spatial and temporal

Dynamic ranges – spatial and temporal

Application high speed diagnostics – examples

- Field of application
 - Experiments where only few realizations or short measurement periods are available (shock tubes, IC engines, ...)
 - Transients in combustion
 - ignition, extinction
 - blow off, flashback
 - flame propagation, cyclic variations ... _
- Instrumentation specific to spectral range and diagnostic method
 - Towards 4D imaging (3D in space + time) → new high speed lasers and CMOS cameras

- (conditional) statistics

Ex2: High speed imaging

- Rapid progress of laser and camera technology over the last 6-8 years
- Recent reviews on high speed imaging
 - Böhm et al. (FTaC 2011)
 - Thurow et al. (MST 2013)
 - Sick (PCI 2013)
- Requirements
 - High power lasers
 - High frame rate cameras

Extinction in turbulent opposed jet flame B. Böhm et al. PCI 2009

Burst lasers for high speed imaging

- Low duty cycle, high pulse energies
 - Aldén group (Lund)
 - Cluster of 4 Nd:YAG lasers, frequency doubled
 - 4 8 pulses/burst, <500mJ/pulse</p>
 - Use of harmonics directly or for pumping a dye laser/dye laser cluster

technische

UNIVERSITÄT DARMSTADT

Burst lasers for high speed imaging

- Low duty cycle, high pulse energies
 - Aldén group (Lund)
 - Cluster of 4 Nd:YAG lasers, frequency doubled

30 mm

- 4 8 pulses/burst, <500mJ/pulse</p>
- Use of harmonics directly or for pumping a dye laser/dye laser cluster

2.6 ms

e) 5000 rpm 1.6 ms

OH-PLIF, $\Delta t = 1 \text{ ms}$

Turbulent flame kernel propagation following spark ignition, stoich. CH₄/air

3.6 ms

4.6 ms

Burst lasers for high speed imaging

Continuously pulsed high speed lasers

- High duty cycle, low pulse energies
 - Long pulse-lasers: $\Delta t_{laser} > 100$ ns \rightarrow intra-cavity conversion for VIS, UV generation
 - Short pulse-lasers: Δt_{laser} < 20ns \rightarrow extra-cavity conversion for VIS, UV generation
 - Suitable to pump dye lasers
 - Most recent specifications:
 - 50 kHz, 200 W pump power @ 532 nm \rightarrow 7 W @ 283nm (2-step SHG)
 - S. Hammack, C. Carter, C. Wünsche, T. Lee: Appl. Optics (2014)

plasma-torch stabilized CH₄/air flame

Instrumentation – cameras

- High speed cameras
 - Multi-frame CCD's cameras
 - Example: Princeton Scientific Instruments PSI 4

(28 frames, 3 MHz, 80x160 pixels, 14 bit)

TECHNISCHE

UNIVERSITÄT DARMSTADT

Instrumentation – cameras

- High speed cameras
 - Multi-frame CCD's cameras
 - CMOS cameras
 - Example: Phantom v2512
 - (1280 x 800@ 25,000 fps, 128 x 16 pixels @ 1,000,000 fps)
 - Other providers: PCO, Photron

Andreas Dreizler | 29

CMOS – basic sensor checks

- High speed CMOS not yet temp. stabilized
 - → Significant temperature drift, independent on illumination
 - \rightarrow Wait for thermal equilibrium
- Truncated dark noise with "intensity calibration"
 → Switch off intensity calibration
- Vacancies in grey value resolution due to pixel gain
 - \rightarrow Reduces dynamic range
 - \rightarrow Introduces larger digitization noise

CMOS – Non-linearity

- Checking camera response (pixelwise)
 → Homogenous calibrated light source (Ulbricht sphere)
- Model for pixel response as

 $G_i = G_{0,i} + K_{i,N_{e,i}} N_{e,i}$

- \rightarrow Inherent non-linear response
- \rightarrow Deviations from linearity < 6%
- Inclusion of image 2-stage-intensifier (MCP + booster)

 \rightarrow Significantly increased non-linearity

CMOS – image intensifier signal depletion

- Intensified systems suffer from signal depletion
- Full sensor illumination: Depletion increases with signal intensity (grey value n) and repetition rate
- → Without correction: device is unable to reproduce a constant signal within the first few 2000 frames
- Dependent on
 - Signal intensity
 - Frame rate
 - Exposure time
 - Illuminated area
 - \rightarrow In-situ calibration required

CMOS – quantitative measurements

Unintensified CMOS camera (preferred)

- Resolve dark signal (disable IC)
- (Pixelwise) correction of nonlinearity

Intensified CMOS

- Pixelwise correction of nonlinearity
- Signal depletion. No best practice advice available
- \rightarrow Solution: monitor depletion with spot of known illumination?
- "Halos" (steep intensity gradients cause cross-talk to neighboring pixels)?
- \rightarrow Each CMOS camera/ intensifier has unique characteristics
- \rightarrow Need for common calibration procedure
- \rightarrow EMVA 3.0 not suitable for our needs

