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State-of-the-art laser combustion diagnostics 

 Flow and multi-scalar measurements

 Low sampling rates (<100 Hz)

 High precision and accuracy

 Good for measuring statistical moments (single-point, two-point statistics)

 Example: scatter plots by multi-scalar Raman/Rayleigh spectroscopy 
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State-of-the-art laser combustion diagnostics 

 Example: scatter plots by multi-

scalar Raman/Rayleigh 

spectroscopy, lean premixed swirl 

flame
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Motivation for high speed diagnostics

 Example flame extinction (w/o subsequent re-ignition)

 Here turbulent opposed jet flows, partially premixed flame

 Bulk flow rates close to global extinction

Böhm, Dreizler PCI 2009
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Motivation for high speed diagnostics

 Example flame extinction (w/o subsequent re-ignition)

 Here turbulent opposed jet flows, partially premixed flame

 Bulk flow rates close to global extinction

→ Tracking extinction needs high sampling rates, post event-

triggering and sequence lengths over 10 – 100ms

Böhm, Dreizler PCI 2009
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Individual extinction events

 multiple vortices act coherently generating regions of high strain 

close to the flame at the onset of extinction 
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Conditional averages

Maximum of axial strain 

surrounded by maxima of radial 

strain

 Imposed strain requires time to 

cause extinction 

 Time history is important

Diffusion requires time to reduce 

scalar gradients
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Multi-parameter diagnostics at high speed

 Simultaneous measurement of velocity fields and qualitative scalar fields 

that mark features of flames (such as flame fronts) allows determination 

of conditional velocities:

 Switch from lab-coordinates to flame-fixed coordinates

 De-convolute effects from intermittency

 Better observation of interaction between flow and scalar fields

 Conditional strain

 Conditional vorticity
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Transient phenomena in combustion research

 Phenomena requiring high speed diagnostics for better understanding

 Extinction and re-ignition

 Flame stabilization of lifted flames and flame propagation

 Flashback in nozzles

 Auto- and spark-ignition

 Cycle-to-cycle variations in IC engines

 4D-imaging

 What repetition rate is needed?
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Typical time scales – lab-scale turbulent 

premixed flame

 Tint ~ 1.0ms → Sampling rate (0.1 x Tint) ~ 100µs → 10 kHz

OH PLIF @ 5 kHz @ 10 kHz

sequence “judders” sequence runs “smoothly”
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Typical time scales – IC engine

 IC engine operating at 1000 rpm → resolving 1 °CA corresponds to       

166 µs → 6 kHz

High Speed Laser

(Edgewave IS4II-DE)

90° mirror

Sheet forming optics

CMOS Camera

Highspeed

Transparent 

Otto engine

Fuel-

Injector

Flow field during compression

@ 6 kHz 2C-PIV; 
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E. Baum, et al. Flow Turbulence Combust. 92, 269-297 (2014) 



Statistically correlated measurements:       

Scales to be resolved – integral time scale (Tint)

• Swirling annular flow: non-reacting and premixed flame (lab scale)
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Statistically correlated measurements:       

Scales to be resolved – integral time scale (Tint)

• Swirling annular flow: non-reacting and premixed flame (lab scale)
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Example

Swirl flame

Re = 40,000/10,000

Scales to be resolved – Kolmogorov time scale

• Kolmogorov time scale tK (integral length scale Lint from 2-point correlations)

• Nyquist-Shannon theorem
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tK~ 100 µs (representative estimate)
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Imaging:

Fulfilled by state-of-the art

CMOS camera technology



Interdependency of time and length scales

• Field of View:

• Nyquist-Shannon:
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Interdependency of time and length scales
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Interdependency of time and length scales
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M = 1M = 1

Dynamic ranges – spatial and temporal
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M > 1

Dynamic ranges – spatial and temporal

Andreas Dreizler | 20

10-5 10-4 10-3 10-2 10-1
1

10

100

1,000

10,000

100,000

F
re

q
u

e
n

c
y

[H
z
]

Length [m]



Application high speed diagnostics – examples 

• Field of application

• Experiments where only few realizations or short measurement 

periods are available (shock tubes, IC engines, …)

• Transients in combustion 

• ignition, extinction

• blow off, flashback

• flame propagation, cyclic variations …

• Instrumentation specific to spectral range and diagnostic method

• Towards 4D imaging (3D in space + time) → new high speed lasers 

and CMOS cameras
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(conditional) statistics



Ex2: High speed imaging

• Rapid progress of laser and camera technology over the last 6-8 years

• Recent reviews on high speed imaging

• Böhm et al. (FTaC 2011)

• Thurow et al. (MST 2013)

• Sick (PCI 2013)

• Requirements

• High power lasers

• High frame rate cameras 
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Extinction in turbulent opposed jet flame

B. Böhm et al. PCI 2009



Burst lasers for high speed imaging

 Low duty cycle, high pulse energies

 Aldén group (Lund)

 Cluster of 4 Nd:YAG lasers, frequency doubled

 4 – 8 pulses/burst, <500mJ/pulse

 Use of harmonics directly or for pumping a dye laser/dye laser cluster

Kaminski et al. PCI 2000
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30 mm

Lund multi-YAG

Multi-VAG Lund Laser System.pptx


Burst lasers for high speed imaging

 Low duty cycle, high pulse energies

 Aldén group (Lund)

 Cluster of 4 Nd:YAG lasers, frequency doubled

 4 – 8 pulses/burst, <500mJ/pulse

 Use of harmonics directly or for pumping a dye laser/dye laser cluster

Turbulent flame kernel propagation following spark ignition, stoich. CH4/air
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OH-PLIF, t = 1 ms

30 mm

Lund multi-YAG

Multi-VAG Lund Laser System.pptx


Burst lasers for high speed imaging 

 Sutton and Lempert groups (Ohio State Univ.)

 Up to 100 pulses/burst @ 50 kHz (Papageorge et al. Appl. Phys. B 2014)
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DLR B Flame: Temperature field measurements at 10 kHz

using Rayleigh scattering



Continuously pulsed high speed lasers 

 High duty cycle, low pulse energies

 Long pulse-lasers:  tlaser > 100ns → intra-cavity conversion for VIS, UV 

generation

 Short pulse-lasers:  tlaser <   20ns → extra-cavity conversion for VIS, UV 

generation

 Suitable to pump dye lasers

 Most recent specifications: 

 50 kHz, 200 W pump power @ 532 nm → 7 W @ 283nm (2-step SHG)

S. Hammack, C. Carter, C. Wünsche, T. Lee: Appl. Optics (2014)

plasma-torch stabilized CH4/air flame
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Instrumentation – cameras

 High speed cameras

 Multi-frame CCD´s cameras

 Example: Princeton Scientific Instruments PSI 4 

(28 frames, 3 MHz, 80x160 pixels, 14 bit) 
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Instrumentation – cameras

 High speed cameras

 Multi-frame CCD´s cameras

 CMOS cameras

 Example: Phantom v2512

(1280 x 800@ 25,000 fps, 128 x 16 pixels @ 1,000,000 fps)

 Other providers: PCO, Photron
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CMOS – basic sensor checks

 High speed CMOS not yet temp. stabilized

→ Significant temperature drift, independent 

on illumination

→ Wait for thermal equilibrium

 Truncated dark noise with “intensity calibration”

→ Switch off intensity calibration

 Vacancies in grey value resolution due to pixel 

gain

→ Reduces dynamic range

→ Introduces larger digitization noise

Weber, Dreizler APB 2011
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 Checking camera response (pixelwise)

→ Homogenous calibrated light source 

(Ulbricht sphere)

 Model for pixel response as

→ Inherent non-linear response 

→ Deviations from linearity < 6%

 Inclusion of image 2-stage-intensifier  

(MCP + booster)

→ Significantly increased non-linearity

CMOS – Non-linearity

,0, , ,e ii i i N e iG G K N 
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CMOS – image intensifier signal depletion

 Intensified systems suffer from signal 

depletion

 Full sensor illumination: Depletion increases 

with signal intensity (grey value n) and 

repetition rate

→ Without correction: device is unable to 

reproduce a constant signal within the first 

few 2000 frames

 Dependent on

 Signal intensity

 Frame rate

 Exposure time

 Illuminated area

→ In-situ calibration required

Grey values n @ 5.4kHz

Rep. rate 

@ constant grey value
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 Unintensified CMOS camera (preferred)
 Resolve dark signal (disable IC)

 (Pixelwise) correction of nonlinearity

 Intensified CMOS
 Pixelwise correction of nonlinearity

 Signal depletion. No best practice advice available

→ Solution: monitor depletion with spot of known illumination?

 “Halos” (steep intensity gradients cause cross-talk to neighboring 

pixels)?

→ Each CMOS camera/ intensifier has unique characteristics

→ Need for common calibration procedure 

→ EMVA 3.0 not suitable for our needs

CMOS – quantitative measurements 
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