Tsinghua-Princeton-CI Summer School July 14-20, 2019

Structure and Dynamics of Combustion Waves in Premixed Gases

Paul Clavin Aix-Marseille Université ECM & CNRS (IRPHE)

Lecture III Thermal propagation of flames

Copyright 2019 by Paul Clavin This material is not to be sold, reproduced or distributed without permission of the owner, Paul Clavin

Lecture 3: Thermal propagation

- 3-1. Quasi-isobaric approximation (Low Mach number)
- 3-2. One-step irreversible reaction
- 3-3. Unity Lewis number and large activation energy
- 3-4. Zeldovich & Frank-Kamenetskii asymptotic analysis Preheated zone Inner reaction layer Matched asymptotic solution
- 3-5. Reaction diffusion waves

Phase space

Selected solution in an unstable medium

III - 1) Quasi-isobaric approximation. LowMach number

$$\rho(\mathbf{u}.\nabla)\mathbf{u} \approx -\nabla p \quad \Rightarrow \quad \delta p \approx \rho u \delta u$$
$$p \approx \rho a^2 \quad \Rightarrow \delta p/p \approx u^2/a^2 \equiv M^2 \quad \Leftarrow \delta u \approx u$$

slow evolution

 $\partial/\partial t \approx \mathbf{u} \cdot \nabla \ll a |\nabla|$

+ very subsonic flow $M^2 \ll 1 \implies \delta p/p \ll \delta T/T = O(1)$

$$\frac{p}{\rho c_p T} = O(1)$$

$$\left|\frac{1}{p}\frac{\mathrm{D}p}{\mathrm{D}t}\right| \ll \left|\frac{1}{T}\frac{\mathrm{D}T}{\mathrm{D}t}\right| \implies \left|\frac{\mathrm{D}p}{\mathrm{D}t}\right| \ll \left|\rho c_p\frac{\mathrm{D}T}{\mathrm{D}t}\right|$$

$$\Rightarrow \left|\frac{\mathrm{D}p}{\mathrm{D}t}\right| \ll \left|\rho c_p\frac{\mathrm{D}T}{\mathrm{D}t}\right|$$

$$\rho c_p \mathrm{D}T/\mathrm{D}t = \mathrm{D}p/\mathrm{D}t + \nabla (\lambda \nabla T) + \sum_j Q^{(j)} \dot{W}^{(j)}$$
(in open space)

$$\rho T = \rho_o T_o \qquad \begin{aligned} \rho c_p \mathrm{D} T / \mathrm{D} t &= \nabla . (\lambda \nabla T) + \sum_j Q^{(j)} \dot{W}^{(j)}(T, ..Y_k..) \\ \rho \mathrm{D} Y_i / \mathrm{D} t &= \nabla . (\rho D_i \nabla Y_i) + \sum_j^j \vartheta_i^{(j)} \mathsf{m}_i \dot{W}^{(j)}(T, ..Y_k..), \end{aligned}$$

Planar flame reference frame of flame

$$\rho D/Dt = md/dx$$

 $m \equiv \rho_u U_L = \rho_b U_b, \qquad U_b/U_L \approx T_b/T_u, \approx 4-8$

mass flux across the planar flame

quasi-isobaric approximation: $\rho T \approx \text{cst.}$

ations
$$mc_{p}\frac{\mathrm{d}T}{\mathrm{d}x} - \frac{\mathrm{d}}{\mathrm{d}x}\left(\lambda\frac{\mathrm{d}T}{\mathrm{d}x}\right) = \sum_{j} Q^{(j)}\dot{W}^{(j)}(T,..Y_{i..})$$
$$m\frac{\mathrm{d}Y_{i}}{\mathrm{d}x} - \frac{\mathrm{d}}{\mathrm{d}x}\left(\rho D_{i}\frac{\mathrm{d}Y_{i}}{\mathrm{d}x}\right) = \sum_{j} \vartheta_{i}^{(j)}M_{i}\dot{W}^{(j)}(T,..Y_{i'..}),$$

 $x = -\infty$: $T = T_u$, $Y_i = Y_{iu}$, $\dot{W}^{(j)} = 0$ frozen state

boundary conditions

 $x = +\infty$: dT/dx = 0, $Y_i = Y_{ib}$, $\dot{W}^{(j)} = 0$ equilibrium state

III-2) One-step irreversible reaction $R \rightarrow P+Q$

R in an inert ; Y = mass fraction of R

Velocity and structure of the planar flame

 $mc_{p}\frac{\mathrm{d}T}{\mathrm{d}x} - \frac{\mathrm{d}}{\mathrm{d}x}\left(\lambda\frac{\mathrm{d}T}{\mathrm{d}x}\right) = \rho q_{R}\dot{W} \qquad q_{R} = \text{energy released per unit of mass of R}$ $dY \quad d \not \quad dY \end{pmatrix} \qquad \overrightarrow{m} \equiv \rho_{u}U_{L} \text{ unknown}$ $m\frac{\mathrm{d}Y}{\mathrm{d}x} - \frac{\mathrm{d}}{\mathrm{d}x}\left(\rho D\frac{\mathrm{d}Y}{\mathrm{d}x}\right) = -\rho\dot{W}$ $mY_u = \int_{-\infty}^{+\infty} \rho \dot{W} \mathrm{d}x$ $x \to -\infty$: $Y = Y_u, T = T_u$ $c_p(T_b - T_u) = q_m \equiv q_B Y_u$ $x \to +\infty$: Y = 0Arrhenius law $\rho \dot{W} = \rho_b \frac{Y}{\tau_r(T)} \qquad \frac{1}{\tau_r(T)} \equiv \frac{e^{-E/\kappa_B T}}{\tau_{coll}} \qquad \frac{1}{\tau_{rb}} \equiv \frac{e^{-E/k_B T}}{\tau_{coll}}$ $\frac{1}{\tau_r(T)} = \frac{1}{\tau_{rb}} e^{-\frac{T_b}{T}\beta(1-\theta)} \qquad \beta \equiv \frac{E}{k_B T_b} \left(1 - \frac{T_u}{T_b}\right) \qquad \theta \equiv \frac{T - T_u}{T_b - T_u} \in [0, 1]$

III = III = 4) Zeldovich, Frank-Kamenetskii asymptotic analysis

should be equal to the heat flux from the thin reaction layer

Inner reaction layer

$$m = \rho_b \sqrt{(2/\beta^2) D_{Tb}/\tau_{rb}}, \quad U_L = m/\rho_u, \Rightarrow \quad \frac{d_r/d_L = O(1/\beta)}{8}$$

III-5) Reaction diffusion waves

propagating planar wave at constant velocity

 μ unknown, number of solutions ?

ZFK flame model: $\omega > 0$, case (II)

P.Clavin III Number of solutions ? phase space, phase portrait

Unstable medium

Clavin, Linan 1984

Soft
$$\omega(\theta) = \theta(1-\theta)$$

Stiff $w(\theta,\beta) = (\beta^2/2)\theta(1-\theta)e^{-\beta(1-\theta)}, \beta \gg 1$