教育背景
9/2001-6/2006 厦门大学化学系,博士
9/1997-7/ 2001 厦门大学化学系,学士
工作经历
7/2015-至今 清华大学燃烧能源中心,能源与动力工程系,副教授
7/2013-5/2015 美国明尼苏达大学化学系,Research Associate
7/2010-6/2013 美国明尼苏达大学化学系,博士后
5/2008-5/2010 以色列耶路撒冷希伯莱大学,博士后
2/2008-5/2008 香港浸会大学,研究助理
7/2006-4/2008 厦门大学化学系,讲师
9/2004-2/2005 香港城市大学,研究助理
其他职务
副教授,厦门大学物理化学专业博士(2006),厦门大学化学系讲师(2006-2008),以色列耶路撒冷希伯莱大学博士后(2008-2010),美国明尼苏达大学博士后(2010-2013),美国明尼苏达大学Research Associate (2013-2015),现任清华大学燃烧能源中心/热能工程系副教授。研究兴趣包括光化学,大气化学,燃烧化学和动力学等方向的理论计算研究。
研究领域与兴趣
激发态,光化学,非绝热激发态动力学,化学反应动力学,过渡金属,催化反应等领域的理论计算研究
奖励与荣誉
-
发明专利与著作
-
期刊文章
Publications (ORCID: 0000-0002-2009-0483; Researcher ID: J-1360-2014)
Selected Publications:
1. Yan, L.; Javoy, S.; Mevel, R.*; Xu, X.* Phys. Chem. Chem. Phys. 2021, 23, 585-596.
DOI: https://dx.doi.org/10.1039/d0cp05131d
A Chemically Consistent Rate Constant for the Reaction of Nitrogen Dioxide with the Oxygen Atom
2. Zhang, Z.; Xu, X.* ACS Appl. Mater, Interfaces 2020, 12, 56987-56994.
DOI: https://dx.doi.org/10.1021/acsami.0c16362
Efficient Heteronuclear Diatom Electrocatalyst for Nitrogen Reduction Reaction: Pd–Nb Diatom Supported on Black Phosphorus
3. Zhang, R. M.; Xu, X.*; Truhlar, D. G.* J. Am. Chem. Soc. 2020, 142, 16064-16071.
DOI: https://doi.org/10.1021/jacs.0c07692
Selected as JACS Spotlight: J. Am. Chem. Soc. 2020, 142, 16511-16512.
DOI: https://dx.doi.org/10.1021/jacs.0c10087
Low-Pressure Limit of Competitive Unimolecular Reactions
4. Wu, J.; Gao, L. G.; Varga, Z.; Xu, X.*; Ren, W.*; Truhlar, D. G.* Angew. Chem. Int. Ed. 2020, 59, 1-6.
DOI: https://doi.org/10.1002/anie.202001065
Water Catalysis of the Reaction of Methanol with OH Radical in the Atmosphere is Negligible
5. Gao, L. G.; Zhang, R.-M; Xu, X.; Truhlar, D. G.* J. Am. Chem. Soc. 2019, 141, 13635-13642.
DOI: https://pubs.acs.org/doi/10.1021/jacs.9b06506
Quantum Effects on H2 Diffusion in Zeolite RHO: Inverse Kinetic Isotope Effect for Sieving
6. Guo, X.; Zhang, R.-M; Gao, L. G.; Zhang, X.*; Xu, X.* Phys. Chem. Chem. Phys. 2019, 21, 24458-24468.
DOI: http://dx.doi.org/10.1039/c9cp04809j
Computational Kinetics of the Hydrogen Abstraction Reactions of n-Propanol and iso-Propanol by OH Radical
7. Zhang, R.-M.; Truhlar, D. G.; Xu, X.* Research. 2019, ID5373785.
DOI: https://doi.org/10.34133/2019/5373785
Kinetics of the Toluene Reaction with OH Radical
8. Gao, L. G.; Zheng, J.; Fernández-Ramos, A.; Truhlar, D. G.*; Xu, X.* J. Am. Chem. Soc. 2018, 140, 2906.
DOI: http://pubs.acs.org/doi/10.1021/jacs.7b12773
Kinetics of the Methanol Reaction with OH at Interstellar, Atmospheric, and Combustion Temperatures
9. Xu, X.; Zheng, J.; Truhlar, D. G.* J. Am. Chem. Soc. 2015, 137, 8026.
DOI: http://dx.doi.org/10.1021/jacs.5b04845
Selected as JACS Spotlight: J. Am. Chem. Soc. 2015, 137, 8311.
DOI: http://dx.doi.org/10.1021/jacs.5b06634
Ultraviolet Absorption Spectrum of Malonaldehyde in Water Is Dominated by Solvent-Stabilized Conformations
10. Xu, X.; Zhang, W.; Tang, M.; Truhlar, D. G.* J. Chem. Theory Comput. 2015, 11, 2036.
DOI: http://dx.doi.org/10.1021/acs.jctc.5b00081
Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition metals?
11. Xu, X.; Zheng, J.; Yang, K. R.; Truhlar, D. G. J. Am. Chem. Soc. 2014, 136, 16378.
DOI: http://dx.doi.org/10.1021/ja509016a
Photodissociation Dynamics of Phenol: Multistate Trajectory Simulations including Tunneling
12. Xu, X.; Yang, K. R.; and Truhlar, D. G., J. Chem. Theory Comput. 2014, 10, 2070.
DOI: http://dx.doi.org/10.1021/ct500128s
Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms
13. Xu, X.; Yang, K. R.; Truhlar, D. G. J. Chem. Theory Comput. 2013, 9, 3612.
DOI: http://dx.doi.org/10.1021/ct400447f
Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol
14. Xu, X.; Gozem, S.; Olivucci, M.; Truhlar, D. G. J. Phys. Chem. Lett. 2013, 4, 253.
DOI: http://dx.doi.org/10.1021/jz301935x
Combined Self-Consistent-Field and Spin-Flip Tamm-Dancoff Density Functional Approach to Potential Energy Surfaces for Photochemistry
15. Xu, X.; Alecu, I. M. and Truhlar, D. G. J. Chem. Theory Comput. 2011, 7, 1667.
DOI: http://dx.doi.org/10.1021/ct2001057
How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States?