教育背景
2016-2023年 清华大学,博士
2012-2016年 清华大学,学士
工作经历
2025-至今 清华大学燃烧能源中心,博士后
2023-2025年 清华大学化工系,博士后
其他职务
-
研究领域与兴趣
研究方向主要涉及人工智能、材料科学和电化学的交叉领域,重点关注新一代能源存储系统,包括固态电池、高能量密度电池以及燃料电池,主要涵盖两个方向:
1. 智能电池设计:人工智能辅助材料设计、性能建模和电池管理,及智能内置传感器和组件的设计。
2. 电池安全:电池安全问题产生的机制、建模以及安全设计,涉及电池析锂和热失控等关键问题。
奖励与荣誉
2023年 清华大学“水木学者”
发明专利与著作
1. Wang Y. Thermal hazards—Including thermal runaway, explosions and propagation, in Encyclopedia of Electrochemical Power Sources, Elsevier; 2025, p. 677–87.
期刊文章
Selected Publications in 5 years:
1. Wang Y, Feng X, Guo D, Hsu H, Hou J, Zhang F, et al. Temperature excavation to boost machine learning battery thermochemical predictions. Joule 2024;8:2639–51.
2. Han X*, Mao S, Wang Y*, Lu Y, Wang D, Sun Y, et al. Manipulation of lithium dendrites based on electric field relaxation enabling safe and long-life lithium-ion batteries. Nat Commun 2025;16:3699.
3. Li K, Gao X, Peng S, Wang S, Zhang W, Liu P, Wu W, Wang H, Wang Y*, et al. A comparative study on multidimensional signal evolution during thermal runaway of lithium-ion batteries with various cathode materials. Energy 2024;300:131560.
4. Wang Y, Feng X, Huang W, He X, Wang L, Ouyang M. Challenges and Opportunities to Mitigate the Catastrophic Thermal Runaway of High-Energy Batteries. Advanced Energy Materials 2023;13:2203841.
5. Wang Y, Feng X, Peng Y, Zhang F, Ren D, Liu X, et al. Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure. Joule 2022;6:2810–20. (
6. Lu Y, Guo D, Xiong G, Wei Y, Zhang J, Wang Y, et al. Towards real-world state of health estimation: Part 2, system level method using electric vehicle field data. eTransportation 2024;22.
7. Lu Y, Chen X, Han X, Guo D, Wang Y, Feng X, et al. Mechanisms for the evolution of cell-to-cell variations and their impacts on fast-charging performance within a lithium-ion battery pack. Journal of Energy Chemistry 2024;99:11–22.
8. Qian G, Wang Y, Zheng Y, Sun Y, Ouyang M, Han X, et al. The timescale identification and quantification of complicated kinetic processes in lithium-ion batteries based on micro-reference electrodes. Journal of Power Sources 2024;614. (IF=8.1)
9. Jin C, Sun Y, Zheng Y, Yao J, Wang Y, Lai X, et al. In situ observation of thermal runaway propagation in lithium-ion battery electrodes triggered by high-frequency induction heating. Cell Reports Physical Science 2023;4:101465. (IF=7.9)
10. Wang Y, Ren D, Feng X, Wang L, Ouyang M. Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics. Applied Energy 2022;306.
11. Li K, Wang L, Wang Y*, Feng X*, Jiang F*, Ouyang M. Correlating phase transition with heat generation through calorimetric data. eScience 2023:100226
12. Hu X, Wang Y*, Feng X*, Wang L, Ouyang M, Zhang Q. Thermal stability of ionic liquids for lithium-ion batteries: A review, Renewable and Sustainable Energy Reviews 2025.
13. Mao S, Wang Y*, Lu Y, Han X*, Zheng Y, Feng X, et al. In situ evaluation and manipulation of lithium plating morphology enabling safe and long-life lithium-ion batteries. InfoMat 2024:e12612.
14. Wang Y, Ren D, Feng X, Wang L, Ouyang M. Thermal kinetics comparison of delithiated Li[NixCoyMn1-x-y]O2 cathodes. Journal of Power Sources 2021;514.
15. Hou J, Feng X, Wang L, Liu X, Ohma A, Lu L, Ren D, Huang W, Li Y, Yi M, Wang Y, et al. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials 2021;39:395–402.